Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 41(8): 111684, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36417864

RESUMO

Ribosome synthesis begins in the nucleolus with 90S pre-ribosome construction, but little is known about how the many different snoRNAs that modify the pre-rRNA are timely guided to their target sites. Here, we report a role for Cms1 in such a process. Initially, we discovered CMS1 as a null suppressor of a nop14 mutant impaired in Rrp12-Enp1 factor recruitment to the 90S. Further investigations detected Cms1 at the 18S rRNA 3' major domain of an early 90S that carried H/ACA snR83, which is known to guide pseudouridylation at two target sites within the same subdomain. Cms1 co-precipitates with many 90S factors, but Rrp12-Enp1 encircling the 3' major domain in the mature 90S is decreased. We suggest that Cms1 associates with the 3' major domain during early 90S biogenesis to restrict premature Rrp12-Enp1 binding but allows snR83 to timely perform its modification role before the next 90S assembly steps coupled with Cms1 release take place.


Assuntos
Nucléolo Celular , Ribossomos , Ribossomos/metabolismo , Nucléolo Celular/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , RNA Nucleolar Pequeno/metabolismo
2.
Int Aff ; 97(5): 1541-1558, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34642575

RESUMO

Do global health institutions keep up with globalization forces? We contend that they seriously lag behind. While medical knowledge becomes more and more refined in showing how diseases spread globally, the political order meant to address this problem is barely global. It is global in terms of the promises it makes in declarations and even legally binding instruments (institutional foreground). But many entrenched political practices of interaction do not keep these promises (institutional background). We explain this with the dominance of a traditional diplomatic 'feel of the game' in which often narrowly defined national interests, positioning battles among states, and a subordination of global health under considerations of international security and economics prevail. Based on this diagnosis, we discuss three scenarios for the further evolution of the global health order: (1) the persistence of current institutions, (2) revisions of the institutional foreground and persistence of the background, and (3) a qualitative break that makes amendments to both. While the COVID-19 crisis provides openings for the third and, even more so, the second one, the current upheavals in the liberal constellation of orders makes the first scenario the most likely one.

3.
4.
PLoS One ; 12(8): e0183272, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28813493

RESUMO

In eukaryotes, ribosome assembly is a highly complex process that involves more than 200 assembly factors that ensure the folding, modification and processing of the different rRNA species as well as the timely association of ribosomal proteins. One of these factors, Mpp10 associates with Imp3 and Imp4 to form a complex that is essential for the normal production of the 18S rRNA. Here we report the crystal structure of a complex between Imp4 and a short helical element of Mpp10 to a resolution of 1.88 Å. Furthermore, we extend the interaction network of Mpp10 and characterize two novel interactions. Mpp10 is able to bind the ribosome biogenesis factor Utp3/Sas10 through two conserved motifs in its N-terminal region. In addition, Mpp10 interacts with the ribosomal protein S5/uS7 using a short stretch within an acidic loop region. Thus, our findings reveal that Mpp10 provides a platform for the simultaneous interaction with multiple proteins in the 90S pre-ribosome.


Assuntos
Fosfoproteínas/metabolismo , Ribonucleoproteínas/metabolismo , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Cromatografia em Gel , Proteínas Nucleares/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , RNA Ribossômico 18S/metabolismo , Proteínas Ribossômicas/metabolismo
5.
PLoS One ; 12(6): e0178752, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28575120

RESUMO

Eukaryotic ribosome biogenesis begins with the co-transcriptional assembly of the 90S pre-ribosome. The 'U three protein' (UTP) complexes and snoRNP particles arrange around the nascent pre-ribosomal RNA chaperoning its folding and further maturation. The earliest event in this hierarchical process is the binding of the UTP-A complex to the 5'-end of the pre-ribosomal RNA (5'-ETS). This oligomeric complex predominantly consists of ß-propeller and α-solenoidal proteins. Here we present the structure of the Utp4 subunit from the thermophilic fungus Chaetomium thermophilum at 2.15 Å resolution and analyze its function by UV RNA-crosslinking (CRAC) and in context of a recent cryo-EM structure of the 90S pre-ribosome. Utp4 consists of two orthogonal and highly basic ß-propellers that perfectly fit the EM-data. The Utp4 structure highlights an unusual Velcro-closure of its C-terminal ß-propeller as relevant for protein integrity and potentially Utp8 recognition in the context of the pre-ribosome. We provide a first model of the 5'-ETS RNA from the internally hidden 5'-end up to the region that hybridizes to the 3'-hinge sequence of U3 snoRNA and validate a specific Utp4/5'-ETS interaction by CRAC analysis.


Assuntos
Chaetomium/metabolismo , Proteínas Fúngicas/metabolismo , Biogênese de Organelas , Precursores de RNA/metabolismo , Ribonucleoproteínas/metabolismo , Ribossomos/metabolismo , Chaetomium/genética , Chaetomium/ultraestrutura , Microscopia Crioeletrônica , Proteínas Fúngicas/química , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica , Subunidades Proteicas , Precursores de RNA/química , Ribonucleoproteínas/química , Ribossomos/ultraestrutura , Transcrição Gênica
6.
Protein Sci ; 26(2): 327-342, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27863450

RESUMO

Ribosome biogenesis in eukaryotic cells is a highly dynamic and complex process innately linked to cell proliferation. The assembly of ribosomes is driven by a myriad of biogenesis factors that shape pre-ribosomal particles by processing and folding the ribosomal RNA and incorporating ribosomal proteins. Biochemical approaches allowed the isolation and characterization of pre-ribosomal particles from Saccharomyces cerevisiae, which lead to a spatiotemporal map of biogenesis intermediates along the path from the nucleolus to the cytoplasm. Here, we cloned almost the entire set (∼180) of ribosome biogenesis factors from the thermophilic fungus Chaetomium thermophilum in order to perform an in-depth analysis of their protein-protein interaction network as well as exploring the suitability of these thermostable proteins for structural studies. First, we performed a systematic screen, testing about 80 factors for crystallization and structure determination. Next, we performed a yeast 2-hybrid analysis and tested about 32,000 binary combinations, which identified more than 1000 protein-protein contacts between the thermophilic ribosome assembly factors. To exemplary verify several of these interactions, we performed biochemical reconstitution with the focus on the interaction network between 90S pre-ribosome factors forming the ctUTP-A and ctUTP-B modules, and the Brix-domain containing assembly factors of the pre-60S subunit. Our work provides a rich resource for biochemical reconstitution and structural analyses of the conserved ribosome assembly machinery from a eukaryotic thermophile.


Assuntos
Chaetomium/química , Proteínas Fúngicas/química , Proteínas Ribossômicas/química , Ribossomos/química , Chaetomium/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo
7.
Cell ; 166(2): 380-393, 2016 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-27419870

RESUMO

The 90S pre-ribosome is an early biogenesis intermediate formed during co-transcriptional ribosome formation, composed of ∼70 assembly factors and several small nucleolar RNAs (snoRNAs) that associate with nascent pre-rRNA. We report the cryo-EM structure of the Chaetomium thermophilum 90S pre-ribosome, revealing how a network of biogenesis factors including 19 ß-propellers and large α-solenoid proteins engulfs the pre-rRNA. Within the 90S pre-ribosome, we identify the UTP-A, UTP-B, Mpp10-Imp3-Imp4, Bms1-Rcl1, and U3 snoRNP modules, which are organized around 5'-ETS and partially folded 18S rRNA. The U3 snoRNP is strategically positioned at the center of the 90S particle to perform its multiple tasks during pre-rRNA folding and processing. The architecture of the elusive 90S pre-ribosome gives unprecedented structural insight into the early steps of pre-rRNA maturation. Nascent rRNA that is co-transcriptionally folded and given a particular shape by encapsulation within a dedicated mold-like structure is reminiscent of how polypeptides use chaperone chambers for their protein folding.


Assuntos
Chaetomium/química , Biogênese de Organelas , Ribossomos/química , Saccharomyces cerevisiae/química , Chaetomium/classificação , Microscopia Crioeletrônica , Modelos Moleculares , RNA Ribossômico 18S/química , Subunidades Ribossômicas Maiores de Eucariotos/química , Subunidades Ribossômicas Menores de Eucariotos/química , Ribossomos/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...