Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 12(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38540166

RESUMO

The gut microbiota plays an important role in maintaining human health, as well as in the development of various pathologies, as indicated by a large amount of research. One of the manifestations of an imbalance in the gut microbiome composition is the appearance of various diseases or immune reactions, in particular, atopic dermatitis (AD) and/or food allergies (FA). In this research, using 16S NGS sequencing, it was found that the gut microbiome of children with food allergies and children with atopic dermatitis can be characterized as having higher inflammatory potential. Both groups exhibited an abundance of representatives from the Pasteurellaceae and Erysipelotrichaceae families, as well as a decrease in the relative number of representatives from the Barnesiellaceae family compared to healthy participants. In the group of participants with food allergies, there was a decrease in the relative number of Desulfovibrionaceae representatives and Bifidobacteriaceae family enrichment in relatively healthy participants. In addition, when comparing this group with patients with atopic dermatitis, it was revealed that a number of representatives of such families as Erysipelotrichaceae, Ruminococcaceae and Sutterellaceae prevailed. This information confirms that AD and FA correlate with changes in the composition of the gut microbiota. Further research is needed to determine the cause-effect connections and the effect of compounds derived from the microbiota on the AD and FA development and progression, as well as to create new probiotic drugs to prevent and modulate immune responses, including at an early age.

2.
Genes (Basel) ; 14(11)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38002996

RESUMO

The neurobiological systems of maintenance and control of behavioral responses result from natural selection. We have analyzed the selection signatures for single nucleotide variants (SNV) of the genes of oxytocin (OXT, OXTR) and vasopressin (AVP, AVPR1A, AVPR1B) systems, which are associated with the regulation of social and emotional behavior in distinct populations. The analysis was performed using original WGS (whole genome sequencing) data on Eastern Slavs (SlEast), as well as publicly available data from the 1000 Genomes Project on GBR, FIN, IBR, PUR, BEB, CHB, and ACB populations (the latter were taken as reference). To identify selection signatures, we rated the integrated haplotype scores (iHS), the numbers of segregating sites by length (nSl), and the integrated haplotype homozygosity pooled (iHH12) measures; the fixation index Fst was implemented to assess genetic differentiation between populations. We revealed that the strongest genetic differentiation of populations was found with respect to the AVPR1B gene, with the greatest differentiation observed in GRB (Fst = 0.316) and CHB (Fst = 0.325) in comparison to ACB. Also, high Fst values were found for SNVs of the AVPR1B gene rs28499431, rs33940624, rs28477649, rs3883899, and rs28452187 in most of the populations. Selection signatures have also been identified in the AVP, AVPR1A, OXT, and OXTR genes. Our analysis shows that the OXT, OXTR, AVP, AVPR1A, and AVPR1B genes were subject to positive selection in a population-specific process, which was likely contributing to the diversity of adaptive emotional response types and social function realizations.


Assuntos
Ocitocina , Vasopressinas , Humanos , Ocitocina/genética , Genômica , Receptores de Ocitocina/genética , Receptores de Vasopressinas/genética
3.
Int J Mol Sci ; 24(20)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37894951

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is considered the most common chronic liver disease worldwide, affecting nearly 25% of the global adult population. Increasing evidence suggests that functional and compositional changes in the gut microbiota may contribute to the development and promote the progression of NAFLD. 16S rRNA gene next-generation sequencing is widely used to determine specific features of the NAFLD microbiome, but a complex system such as the gut microbiota requires a comprehensive approach. We used three different approaches: MALDI-TOF-MS of bacterial cultures, qPCR, and 16S NGS sequencing, as well as a wide variety of statistical methods to assess the differences in gut microbiota composition between NAFLD patients without significant fibrosis and the control group. The listed methods showed enrichment in Collinsella sp. and Oscillospiraceae for the control samples and enrichment in Lachnospiraceae (and in particular Dorea sp.) and Veillonellaceae in NAFLD. The families, Bifidobacteriaceae, Lactobacillaceae, and Enterococcaceae (particularly Enterococcus faecium and Enterococcus faecalis), were also found to be important taxa for NAFLD microbiome evaluation. Considering individual method observations, an increase in Candida krusei and a decrease in Bacteroides uniformis for NAFLD patients were detected using MALDI-TOF-MS. An increase in Gracilibacteraceae, Chitinophagaceae, Pirellulaceae, Erysipelatoclostridiaceae, Muribaculaceae, and Comamonadaceae, and a decrease in Acidaminococcaceae in NAFLD were observed with 16S NGS, and enrichment in Fusobacterium nucleatum was shown using qPCR analysis. These findings confirm that NAFLD is associated with changes in gut microbiota composition. Further investigations are required to determine the cause-and-effect relationships and the impact of microbiota-derived compounds on the development and progression of NAFLD.


Assuntos
Microbioma Gastrointestinal , Microbiota , Hepatopatia Gordurosa não Alcoólica , Adulto , Humanos , Hepatopatia Gordurosa não Alcoólica/patologia , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S/genética , Fibrose , Bacteroidetes , Fígado/patologia
4.
Nucleic Acids Res ; 40(18): 9153-9, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22821559

RESUMO

In the present work, ribosomes assembled in bacterial cells in the absence of essential ribosomal protein L5 were obtained. After arresting L5 synthesis, Escherichia coli cells divide a limited number of times. During this time, accumulation of defective large ribosomal subunits occurs. These 45S particles lack most of the central protuberance (CP) components (5S rRNA and proteins L5, L16, L18, L25, L27, L31, L33 and L35) and are not able to associate with the small ribosomal subunit. At the same time, 5S rRNA is found in the cytoplasm in complex with ribosomal proteins L18 and L25 at quantities equal to the amount of ribosomes. Thus, it is the first demonstration that protein L5 plays a key role in formation of the CP during assembly of the large ribosomal subunit in the bacterial cell. A possible model for the CP assembly in vivo is discussed in view of the data obtained.


Assuntos
Proteínas de Escherichia coli/fisiologia , Proteínas Ribossômicas/fisiologia , Subunidades Ribossômicas Maiores de Bactérias/química , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Deleção de Genes , Modelos Moleculares , RNA Ribossômico 5S/química , Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética , Subunidades Ribossômicas Maiores de Bactérias/metabolismo , Ribossomos/metabolismo
5.
J Biol Chem ; 280(16): 16151-6, 2005 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-15718233

RESUMO

Analysis of the structures of two complexes of 5 S rRNA with homologous ribosomal proteins, Escherichia coli L25 and Thermus thermophilus TL5, revealed that amino acid residues interacting with RNA can be divided into two different groups. The first group consists of non-conserved residues, which form intermolecular hydrogen bonds accessible to solvent. The second group, comprised of strongly conserved residues, form intermolecular hydrogen bonds that are shielded from solvent. Site-directed mutagenesis was used to introduce mutations into the RNA-binding site of protein TL5. We found that replacement of residues of the first group does not influence the stability of the TL5.5 S rRNA complex, whereas replacement of residues of the second group leads to destabilization or disruption of the complex. Stereochemical analysis shows that the replacements of residues of the second group always create complexes with uncompensated losses of intermolecular hydrogen bonds. We suggest that these shielded intermolecular hydrogen bonds are responsible for the recognition between the protein and RNA.


Assuntos
Proteínas de Bactérias/metabolismo , RNA Ribossômico 5S/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Ribossômicas/metabolismo , Proteínas de Bactérias/genética , Escherichia coli/metabolismo , Ligação de Hidrogênio , Conformação de Ácido Nucleico , Estrutura Terciária de Proteína , Proteínas de Ligação a RNA/genética , Proteínas Ribossômicas/genética , Thermus thermophilus/genética , Thermus thermophilus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...