Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Heliyon ; 10(3): e25513, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38352734

RESUMO

In this work, thermodynamic calculations for α + ß Type Ti-Fe-Cu-Sn alloy were carried out by the Thermo-Calc software. Powders from this alloy were obtained by plasma sputtering and used for subsequent 3D printing of experimental samples. The effect of various selective laser melting (SLM) parameters on porosity and hot cracking susceptibility as well as the electrochemical characteristics of the alloy have been studied. The optimal technological regime for the manufacture of samples by the SLM method was determined. It has been established that to obtain relatively dense samples without cracks, regimes with volumetric energy density Ev = 250-300 J/mm3 are required. It has been established that a change in the electrochemical behavior of the Ti94Fe1Cu1Sn4 alloy is related to the formation of a nonequilibrium Ti2Cu phase. Based on the findings we recomended directions for further research.

2.
Phys Rev Lett ; 86(9): 1698-701, 2001 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-11290227

RESUMO

The process e(+)e(-)-->mu(+)mu(-) has been studied by the SND detector at the VEPP-2M e(+)e(-) collider in the phi(1020)-resonance energy region. The measured effective phi meson leptonic branching ratio B(phi-->l(+)l(-)) identical with square root of B(phi-->e(+)e(-))B(phi-->mu(+)mu(-))] = (2.89 +/- 0.10 +/- 0.06) x 10(-4) agrees well with the Particle Data Group value B(phi-->e(+)e(-)) = (2.91 +/- 0.07) x 10(-4), confirming mu-e universality. Without additional assumption of mu-e universality the branching ratio B(phi-->mu(+)mu(-)) = (2.87 +/- 0.20 +/- 0.14) x 10(-4) was obtained.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA