Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37184061

RESUMO

Many developmental processes depend on precise temporal control of gene expression. We have previously established a theoretical framework for regulatory strategies that can govern such high temporal precision, but experimental validation of these predictions was still lacking. Here, we use the time-dependent expression of a Wnt receptor that controls neuroblast migration in Caenorhabditis elegans as a tractable system to study a robust, cell-intrinsic timing mechanism in vivo. Single-molecule mRNA quantification showed that the expression of the receptor increases non-linearly, a dynamic that is predicted to enhance timing precision over an unregulated, linear increase in timekeeper abundance. We show that this upregulation depends on transcriptional activation, providing in vivo evidence for a model in which the timing of receptor expression is regulated through an accumulating activator that triggers expression when a specific threshold is reached. This timing mechanism acts across a cell division that occurs in the neuroblast lineage and is influenced by the asymmetry of the division. Finally, we show that positive feedback of receptor expression through the canonical Wnt pathway enhances temporal precision. We conclude that robust cell-intrinsic timing can be achieved by combining regulation and feedback of the timekeeper gene.


Assuntos
Proteínas de Caenorhabditis elegans , Fatores de Transcrição , Animais , Fatores de Transcrição/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Retroalimentação , Caenorhabditis elegans/metabolismo , Movimento Celular/genética , Regulação da Expressão Gênica no Desenvolvimento
2.
PLoS Biol ; 20(5): e3001597, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35609035

RESUMO

Polyploid cells contain more than 2 copies of the genome and are found in many plant and animal tissues. Different types of polyploidy exist, in which the genome is confined to either 1 nucleus (mononucleation) or 2 or more nuclei (multinucleation). Despite the widespread occurrence of polyploidy, the functional significance of different types of polyploidy is largely unknown. Here, we assess the function of multinucleation in Caenorhabditis elegans intestinal cells through specific inhibition of binucleation without altering genome ploidy. Through single-worm RNA sequencing, we find that binucleation is important for tissue-specific gene expression, most prominently for genes that show a rapid up-regulation at the transition from larval development to adulthood. Regulated genes include vitellogenins, which encode yolk proteins that facilitate nutrient transport to the germline. We find that reduced expression of vitellogenins in mononucleated intestinal cells leads to progeny with developmental delays and reduced fitness. Together, our results show that binucleation facilitates rapid up-regulation of intestine-specific gene expression during development, independently of genome ploidy, underscoring the importance of spatial genome organization for polyploid cell function.


Assuntos
Poliploidia , Vitelogeninas , Animais , Caenorhabditis elegans/genética , Divisão Celular , Núcleo Celular/genética , Expressão Gênica , Vitelogeninas/genética
3.
STAR Protoc ; 2(2): 100411, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-33870220

RESUMO

RNA tomography or tomo-seq combines mRNA sequencing and cryo-sectioning to spatially resolve gene expression. We have adapted this method for the nematode Caenorhabditis elegans to generate anteroposterior gene expression maps at near-cellular resolution. Here, we provide a detailed overview of the method and present two approaches: one that includes RNA isolation for maximum sensitivity and one that is suitable for partial automatization and is therefore less time-consuming. For complete details on the use and execution of this protocol, please refer to Ebbing et al. (2018).


Assuntos
Caenorhabditis elegans , Perfilação da Expressão Gênica/métodos , Análise de Célula Única/métodos , Tomografia/métodos , Animais , Caenorhabditis elegans/química , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , RNA Mensageiro/análise , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de RNA/métodos , Transcriptoma/genética
4.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33737394

RESUMO

Members of the Wnt family of secreted glycoproteins regulate cell migration through distinct canonical and noncanonical signaling pathways. Studies of vertebrate development and disease have shown that these pathways can have opposing effects on cell migration, but the mechanism of this functional interplay is not known. In the nematode Caenorhabditis elegans, a switch from noncanonical to canonical Wnt signaling terminates the long-range migration of the QR neuroblast descendants, providing a tractable system to study this mechanism in vivo. Here, we show that noncanonical Wnt signaling acts through PIX-1/RhoGEF, while canonical signaling directly activates the Slt-Robo pathway component EVA-1/EVA1C and the Rho GTPase-activating protein RGA-9b/ARHGAP, which are required for migration inhibition. Our results support a model in which cross-talk between noncanonical and canonical Wnt signaling occurs through antagonistic regulation of the Rho GTPases that drive cell migration.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Movimento Celular , Proteínas Ativadoras de GTPase/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/metabolismo , Receptores Imunológicos/metabolismo , Via de Sinalização Wnt , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Movimento Celular/genética , Regulação da Expressão Gênica , Proteínas do Tecido Nervoso/genética , Células-Tronco Neurais/citologia , Receptores Imunológicos/genética , Proteínas Roundabout
5.
Mol Biol Evol ; 38(1): 229-243, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-32785688

RESUMO

Divergence of gene function and expression during development can give rise to phenotypic differences at the level of cells, tissues, organs, and ultimately whole organisms. To gain insights into the evolution of gene expression and novel genes at spatial resolution, we compared the spatially resolved transcriptomes of two distantly related nematodes, Caenorhabditis elegans and Pristionchus pacificus, that diverged 60-90 Ma. The spatial transcriptomes of adult worms show little evidence for strong conservation at the level of single genes. Instead, regional expression is largely driven by recent duplication and emergence of novel genes. Estimation of gene ages across anatomical structures revealed an enrichment of novel genes in sperm-related regions. This provides first evidence in nematodes for the "out of testis" hypothesis that has been previously postulated based on studies in Drosophila and mammals. "Out of testis" genes represent a mix of products of pervasive transcription as well as fast evolving members of ancient gene families. Strikingly, numerous novel genes have known functions during meiosis in Caenorhabditis elegans indicating that even universal processes such as meiosis may be targets of rapid evolution. Our study highlights the importance of novel genes in generating phenotypic diversity and explicitly characterizes gene origination in sperm-related regions. Furthermore, it proposes new functions for previously uncharacterized genes and establishes the spatial transcriptome of Pristionchus pacificus as a catalog for future studies on the evolution of gene expression and function.


Assuntos
Caenorhabditis elegans/genética , Evolução Molecular , Família Multigênica , Espermatozoides , Transcriptoma , Animais , Caenorhabditis elegans/metabolismo , Duplicação Gênica , Perfilação da Expressão Gênica , Genoma Helmíntico , Masculino , Meiose/genética , Filogenia , Espermatogênese/genética , Testículo/fisiologia
6.
Phys Rev E ; 101(6-1): 062420, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32688616

RESUMO

Cellular behaviors such as migration, division, and differentiation rely on precise timing, and yet the molecular events that govern these behaviors are highly stochastic. We investigate regulatory strategies that decrease the timing noise of molecular events. Autoregulatory feedback increases noise. Yet we find that in the presence of regulation by a second species, autoregulatory feedback decreases noise. To explain this finding, we develop a method to calculate the optimal regulation function that minimizes the timing noise. The method reveals that the combination of feedback and regulation minimizes noise by maximizing the number of molecular events that must happen in sequence before a threshold is crossed. We compute the optimal timing precision for all two-node networks with regulation and feedback, derive a generic lower bound on timing noise, and discuss our results in the context of neuroblast migration during Caenorhabditis elegans development.


Assuntos
Retroalimentação Fisiológica , Homeostase , Modelos Biológicos , Animais , Caenorhabditis elegans/metabolismo , Movimento Celular , Cinética
7.
MethodsX ; 7: 100922, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32509539

RESUMO

Single-cell isolation and transcriptomic analysis of a specific cell type or tissue offers the possibility of studying cell function and heterogeneity in time-dependent processes with remarkable resolution. The reduced tissue complexity and highly stereotyped development of Caenorhabditis elegans, combined with an extensive genetic toolbox and the ease of growing large tightly synchronized populations makes it an exceptional model organism for the application of such approaches. However, the difficulty to dissociate and isolate single cells from larval stages has been a major constraint to this kind of studies. Here, we describe an improved protocol for dissociation and preparation of single cell suspensions from developmentally synchronized populations of C. elegans L1 larvae. Our protocol has been empirically optimized to allow efficient FACS-based purification of large number of single cells from rare cell types, for subsequent extraction and sequencing of their mRNA.

8.
Development ; 146(18)2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31488562

RESUMO

Directional migration of neurons and neuronal precursor cells is a central process in nervous system development. In the nematode Caenorhabditis elegans, the two Q neuroblasts polarize and migrate in opposite directions along the anteroposterior body axis. Several key regulators of Q cell polarization have been identified, including MIG-21, DPY-19/DPY19L1, the netrin receptor UNC-40/DCC, the Fat-like cadherin CDH-4 and CDH-3/Fat, which we describe in this study. How these different transmembrane proteins act together to direct Q neuroblast polarization and migration is still largely unknown. Here, we demonstrate that MIG-21 and DPY-19, CDH-3 and CDH-4, and UNC-40 define three distinct pathways that have partially redundant roles in protrusion formation, but also separate functions in regulating protrusion direction. Moreover, we show that the MIG-21, DPY-19 and Fat-like cadherin pathways control the localization and clustering of UNC-40 at the leading edge of the polarizing Q neuroblast, and that this is independent of the UNC-40 ligands UNC-6/netrin and MADD-4. Our results provide insight into a novel mechanism for ligand-independent localization of UNC-40 that directs the activity of UNC-40 along the anteroposterior axis.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Moléculas de Adesão Celular/metabolismo , Polaridade Celular , Neurônios/citologia , Neurônios/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Movimento Celular , Centrossomo/metabolismo , Ligantes , Transdução de Sinais
9.
Cell Rep ; 26(12): 3183-3190.e5, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30893592

RESUMO

Appropriate Wnt morphogen secretion is required to control animal development and homeostasis. Although correct Wnt globular structure is essential for secretion, proteins that directly mediate Wnt folding and maturation remain uncharacterized. Here, we report that protein disulfide isomerase-1 (PDI-1), a protein-folding catalyst and chaperone, controls secretion of the Caenorhabditis elegans Wnt ortholog EGL-20. We find that PDI-1 function is required to correctly form an anteroposterior EGL-20/Wnt gradient during embryonic development. Furthermore, PDI-1 performs this role in EGL-20/Wnt-producing epidermal cells to cell-non-autonomously control EGL-20/Wnt-dependent neuronal migration. Using pharmacological inhibition, we further show that PDI function is required in human cells for Wnt3a secretion, revealing a conserved role for disulfide isomerases. Together, these results demonstrate a critical role for PDIs within Wnt-producing cells to control long-range developmental events that are dependent on Wnt secretion.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Movimento Celular , Neurogênese , Neurônios/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Proteínas Wnt/metabolismo , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Células HEK293 , Humanos , Neurônios/citologia , Isomerases de Dissulfetos de Proteínas/genética , Proteínas Wnt/genética , Proteína Wnt3A/genética , Proteína Wnt3A/metabolismo
10.
PLoS Genet ; 14(12): e1007840, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30532125

RESUMO

Van Gogh-like (Vangl) and Prickle (Pk) are core components of the non-canonical Wnt planar cell polarity pathway that controls epithelial polarity and cell migration. Studies in vertebrate model systems have suggested that Vangl and Pk may also inhibit signaling through the canonical Wnt/ß-catenin pathway, but the functional significance of this potential cross-talk is unclear. In the nematode C. elegans, the Q neuroblasts and their descendants migrate in opposite directions along the anteroposterior body axis. The direction of these migrations is specified by Wnt signaling, with activation of canonical Wnt signaling driving posterior migration, and non-canonical Wnt signaling anterior migration. Here, we show that the Vangl ortholog VANG-1 influences the Wnt signaling response of the Q neuroblasts by negatively regulating canonical Wnt signaling. This inhibitory activity depends on a carboxy-terminal PDZ binding motif in VANG-1 and the Dishevelled ortholog MIG-5, but is independent of the Pk ortholog PRKL-1. Moreover, using Vangl1 and Vangl2 double mutant cells, we show that a similar mechanism acts in mammalian cells. We conclude that cross-talk between VANG-1/Vangl and the canonical Wnt pathway is an evolutionarily conserved mechanism that ensures robust specification of Wnt signaling responses.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Fosfoproteínas/metabolismo , Via de Sinalização Wnt/fisiologia , Animais , Animais Geneticamente Modificados , Padronização Corporal/genética , Padronização Corporal/fisiologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Linhagem da Célula , Polaridade Celular/genética , Polaridade Celular/fisiologia , Proteínas Desgrenhadas/genética , Proteínas Desgrenhadas/metabolismo , Genes de Helmintos , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mutação , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Fosfoproteínas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Via de Sinalização Wnt/genética , beta Catenina/genética , beta Catenina/metabolismo
11.
Dev Cell ; 47(6): 801-813.e6, 2018 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-30416013

RESUMO

To advance our understanding of the genetic programs that drive cell and tissue specialization, it is necessary to obtain a comprehensive overview of gene expression patterns. Here, we have used spatial transcriptomics to generate high-resolution, anteroposterior gene expression maps of C. elegans males and hermaphrodites. To explore these maps, we have developed computational methods for discovering region- and tissue-specific genes. We have found extensive sex-specific gene expression differences in the germline and sperm and discovered genes that are specifically expressed in the male reproductive tract. These include a group of uncharacterized genes that encode small secreted proteins that are required for male fertility. We conclude that spatial gene expression maps provide a powerful resource for identifying tissue-specific gene functions in C. elegans. Importantly, we found that expression maps from different animals can be precisely aligned, enabling transcriptome-wide comparisons of gene expression patterns.


Assuntos
Perfilação da Expressão Gênica/métodos , Caracteres Sexuais , Processos de Determinação Sexual/genética , Transcriptoma/genética , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Diferenciação Celular , Transtornos do Desenvolvimento Sexual/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Células Germinativas/metabolismo , Gônadas/metabolismo , Organismos Hermafroditas/metabolismo , Masculino , Meiose , Proteínas Nucleares/metabolismo , Ovário/metabolismo , RNA Mensageiro/genética , Análise Espaço-Temporal , Espermatozoides/metabolismo , Fatores de Transcrição/metabolismo
12.
Nat Commun ; 9(1): 3737, 2018 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-30213940

RESUMO

Wntless transports Wnt morphogens to the cell surface and is required for Wnt secretion and morphogenic gradients formation. Recycling of endocytosed Wntless requires the sorting nexin-3 (SNX3)-retromer-dependent endosome-to-Golgi transport pathway. Here we demonstrate the essential role of SNX3-retromer assembly for Wntless transport and report that SNX3 associates with an evolutionary conserved endosome-associated membrane re-modelling complex composed of MON2, DOPEY2 and the putative aminophospholipid translocase, ATP9A. In vivo suppression of Ce-mon-2, Ce-pad-1 or Ce-tat-5 (respective MON2, DOPEY2 and ATP9A orthologues) phenocopy a loss of SNX3-retromer function, leading to enhanced lysosomal degradation of Wntless and a Wnt phenotype. Perturbed Wnt signalling is also observed upon overexpression of an ATPase-inhibited TAT-5(E246Q) mutant, suggesting a role for phospholipid flippase activity during SNX3-retromer-mediated Wntless sorting. Together, these findings provide in vitro and in vivo mechanistic details to describe SNX3-retromer-mediated transport during Wnt secretion and the formation of Wnt-morphogenic gradients.


Assuntos
Adenosina Trifosfatases/metabolismo , Endossomos/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Nexinas de Classificação/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas Wnt/metabolismo , Animais , Transporte Biológico , Caenorhabditis elegans , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Células HeLa , Humanos , Mutação , Fenótipo , Ligação Proteica , Domínios Proteicos , Proteômica , Interferência de RNA , Transgenes
13.
PLoS Comput Biol ; 14(6): e1006201, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29879102

RESUMO

Important cellular processes such as migration, differentiation, and development often rely on precise timing. Yet, the molecular machinery that regulates timing is inherently noisy. How do cells achieve precise timing with noisy components? We investigate this question using a first-passage-time approach, for an event triggered by a molecule that crosses an abundance threshold and that is regulated by either an accumulating activator or a diminishing repressor. We find that either activation or repression outperforms an unregulated strategy. The optimal regulation corresponds to a nonlinear increase in the amount of the target molecule over time, arises from a tradeoff between minimizing the timing noise of the regulator and that of the target molecule itself, and is robust to additional effects such as bursts and cell division. Our results are in quantitative agreement with the nonlinear increase and low noise of mig-1 gene expression in migrating neuroblast cells during Caenorhabditis elegans development. These findings suggest that dynamic regulation may be a simple and powerful strategy for precise cellular timing.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Modelos Biológicos , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Biologia Computacional , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Neurônios/citologia , Neurônios/fisiologia , Fatores de Tempo
14.
G3 (Bethesda) ; 8(1): 17-26, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29301976

RESUMO

Invertebrate and vertebrate nervous systems generate different types of dopaminergic neurons in distinct parts of the brain. We have taken a genetic approach to understand how the four functionally related, but lineally unrelated, classes of dopaminergic neurons of the nematode Caenorhabditis elegans, located in distinct parts of its nervous system, are specified. We have identified several genes involved in the generation of a specific dopaminergic neuron type that is generated from the so-called postdeirid lineage, called PDE. Apart from classic proneural genes and components of the mediator complex, we identified a novel, previously uncharacterized zinc finger transcription factor, ztf-6 Loss of ztf-6 has distinct effects in different dopamine neuron-producing neuronal lineages. In the postdeirid lineage, ztf-6 is required for proper cell division patterns and the proper distribution of a critical cell fate determinant, the POP-1/TCF-like transcription factor.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Neurônios Dopaminérgicos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição/genética , Dedos de Zinco , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/metabolismo , Diferenciação Celular , Divisão Celular , Linhagem da Célula/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/classificação , Neurônios Dopaminérgicos/citologia , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Grupo de Alta Mobilidade/metabolismo , Mutação , Fatores de Transcrição/metabolismo
15.
Genesis ; 54(4): 198-211, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26934462

RESUMO

During development, cell migration plays a central role in the formation of tissues and organs. Understanding the molecular mechanisms that drive and control these migrations is a key challenge in developmental biology that will provide important insights into disease processes, including cancer cell metastasis. In this article, we discuss the Caenorhabditis elegans Q neuroblasts and their descendants as a tool to study cell migration at single-cell resolution in vivo. The highly stereotypical migration of these cells provides a powerful system to study the dynamic cytoskeletal processes that drive migration as well as the evolutionarily conserved signaling pathways (including different Wnt signaling cascades) that guide the cells along their specific trajectories. Here, we provide an overview of what is currently known about Q neuroblast migration and highlight the live-cell imaging, genome editing, and quantitative gene expression techniques that have been developed to study this process.


Assuntos
Blástula/citologia , Caenorhabditis elegans/crescimento & desenvolvimento , Células-Tronco Neurais/citologia , Análise de Célula Única/métodos , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Movimento Celular , Polaridade Celular , Edição de Genes , Regulação da Expressão Gênica no Desenvolvimento , Modelos Biológicos , Transdução de Sinais
16.
Cell Rep ; 10(3): 339-345, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25600869

RESUMO

The biogenesis of ribosomes and their coordination of protein translation consume an enormous amount of cellular energy. As such, it has been established that the inhibition of either process can extend eukaryotic lifespan. Here, we used next-generation sequencing to compare ribosome-associated RNAs from normal strains of Caenorhabditis elegans to those carrying the life-extending daf-2 mutation. We found a long noncoding RNA (lncRNA), transcribed telomeric sequence 1 (tts-1), on ribosomes of the daf-2 mutant. Depleting tts-1 in daf-2 mutants increases ribosome levels and significantly shortens their extended lifespan. We find tts-1 is also required for the longer lifespan of the mitochondrial clk-1 mutants but not the feeding-defective eat-2 mutants. In line with this, the clk-1 mutants express more tts-1 and fewer ribosomes than the eat-2 mutants. Our results suggest that the expression of tts-1 functions in different longevity pathways to reduce ribosome levels in a way that promotes life extension.

17.
Dev Cell ; 31(2): 188-201, 2014 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-25373777

RESUMO

Members of the Wnt family of secreted signaling proteins are key regulators of cell migration and axon guidance. In the nematode C. elegans, the migration of the QR neuroblast descendants requires multiple Wnt ligands and receptors. We found that the migration of the QR descendants is divided into three sequential phases that are each mediated by a distinct Wnt signaling mechanism. Importantly, the transition from the first to the second phase, which is the main determinant of the final position of the QR descendants along the anteroposterior body axis, is mediated through a cell-autonomous process in which the time-dependent expression of a Wnt receptor turns on the canonical Wnt/ß-catenin signaling response that is required to terminate long-range anterior migration. Our results show that, in addition to direct guidance of cell migration by Wnt morphogenic gradients, cell migration can also be controlled indirectly through cell-intrinsic modulation of Wnt signaling responses.


Assuntos
Caenorhabditis elegans/crescimento & desenvolvimento , Movimento Celular/genética , Células-Tronco Neurais/fisiologia , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/genética , Animais , Caenorhabditis elegans/citologia , Proteínas de Caenorhabditis elegans/biossíntese , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Polaridade Celular , Receptores Frizzled/biossíntese , Receptores Frizzled/metabolismo , Regulação da Expressão Gênica/genética , Glicoproteínas/biossíntese , Glicoproteínas/genética , Glicoproteínas/metabolismo , Proteínas de Homeodomínio/genética , Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Morfogênese , Células-Tronco Neurais/citologia , Fosfoproteínas/metabolismo , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Receptores Acoplados a Proteínas G/biossíntese , Fatores de Transcrição/genética , Proteínas Wnt/biossíntese , beta Catenina/metabolismo
18.
WormBook ; : 1-23, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25317540

RESUMO

During the first stage of larval development, the Q neuroblasts and their descendants migrate to well-defined positions along the anteroposterior body axis, where they differentiate into sensory neurons and interneurons. The two Q neuroblasts are initially present at similar positions on the left and right lateral side, but this symmetry is broken when the Q neuroblast on the left side (QL) polarizes towards the posterior and the Q neuroblast on the right side (QR) towards the anterior. This left-right asymmetry is maintained when the descendants of the two Q neuroblasts migrate to their final positions in the posterior and anterior. The mechanisms that establish this asymmetry and control the migration of the Q descendants along the anteroposterior axis are surprisingly complex and include interplay between Wnt signaling pathways, homeotic genes, and the basic cell migration and polarity machinery. Here, we will give an overview of what is currently known about the mechanisms that mediate and control the development and migration of the Q neuroblasts and their descendants.


Assuntos
Caenorhabditis elegans/citologia , Movimento Celular , Células-Tronco Neurais/citologia , Animais , Padronização Corporal , Caenorhabditis elegans/embriologia
19.
Cell Signal ; 26(12): 2601-5, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25178265

RESUMO

Wnt proteins are lipid modified signaling molecules that have essential functions in development and adult tissue homeostasis. Secretion of Wnt is mediated by the transmembrane protein Wntless, which binds Wnt and transports it from the endoplasmic reticulum to the cell surface for release. To maintain efficient Wnt secretion, Wntless is recycled back to the Golgi and the endoplasmic reticulum through endocytosis and retromer dependent endosome to Golgi transport. We have previously identified protein kinase CK2 (CK2) in a genome-wide screen for regulators of Wnt signaling in Caenorhabditis elegans. Here, we show that CK2 function is required in Wnt producing cells for Wnt secretion. This function is evolutionarily conserved, as inhibition of CK2 activity interferes with Wnt5a secretion from mammalian cells. Mechanistically, we show that inhibition of CK2 function results in enhanced plasma membrane localization of Wls in C. elegans and mammalian cells, consistent with the notion that CK2 is involved in the regulation of Wls internalization.


Assuntos
Caenorhabditis elegans/metabolismo , Caseína Quinase II/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Transporte Proteico/fisiologia , Proteínas Wnt/metabolismo , Animais , Linhagem Celular , Membrana Celular/metabolismo , Células HEK293 , Humanos , Transdução de Sinais/fisiologia
20.
Sci Signal ; 7(317): ra26, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24643799

RESUMO

Wnt signaling plays a central role in development, adult tissue homeostasis, and cancer. Several steps in the canonical Wnt/ß-catenin signaling cascade are regulated by ubiquitylation, a protein modification that influences the stability, subcellular localization, or interactions of target proteins. To identify regulators of the Wnt/ß-catenin pathway, we performed an RNA interference screen in Caenorhabditis elegans and identified the HECT domain-containing ubiquitin ligase EEL-1 as an inhibitor of Wnt signaling. In human embryonic kidney 293T cells, knockdown of the EEL-1 homolog Huwe1 enhanced the activity of a Wnt reporter in cells stimulated with Wnt3a or in cells that overexpressed casein kinase 1 (CK1) or a constitutively active mutant of the Wnt co-receptor low-density lipoprotein receptor-related protein 6 (LRP6). However, knockdown of Huwe1 had no effect on reporter gene expression in cells expressing constitutively active ß-catenin, suggesting that Huwe1 inhibited Wnt signaling upstream of ß-catenin and downstream of CK1 and LRP6. Huwe1 bound to and ubiquitylated the cytoplasmic Wnt pathway component Dishevelled (Dvl) in a Wnt3a- and CK1ε-dependent manner. Mass spectrometric analysis showed that Huwe1 promoted K63-linked, but not K48-linked, polyubiquitination of Dvl. Instead of targeting Dvl for degradation, ubiquitylation of the DIX domain of Dvl by Huwe1 inhibited Dvl multimerization, which is necessary for its function. Our findings indicate that Huwe1 is part of an evolutionarily conserved negative feedback loop in the Wnt/ß-catenin pathway.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fosfoproteínas/metabolismo , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo , Via de Sinalização Wnt , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Desgrenhadas , Células HEK293 , Humanos , Espectrometria de Massas , Interferência de RNA , Proteínas Supressoras de Tumor , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...