Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Psychiatry ; 28(8): 3397-3413, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37433966

RESUMO

Thousands of people suffer from nausea with pregnancy each year. Nausea can be alleviated with cannabidiol (CBD), a primary component of cannabis that is widely available. However, it is unknown how fetal CBD exposure affects embryonic development and postnatal outcomes. CBD binds and activates receptors that are expressed in the fetal brain and are important for brain development, including serotonin receptors (5HT1A), voltage-gated potassium (Kv)7 receptors, and the transient potential vanilloid 1 receptor (TRPV1). Excessive activation of each of these receptors can disrupt neurodevelopment. Here, we test the hypothesis that fetal CBD exposure in mice alters offspring neurodevelopment and postnatal behavior. We administered 50 mg/kg CBD in sunflower oil or sunflower oil alone to pregnant mice from embryonic day 5 through birth. We show that fetal CBD exposure sensitizes adult male offspring to thermal pain through TRPV1. We show that fetal CBD exposure decreases problem-solving behaviors in female CBD-exposed offspring. We demonstrate that fetal CBD exposure increases the minimum current required to elicit action potentials and decreases the number of action potentials in female offspring layer 2/3 prefrontal cortex (PFC) pyramidal neurons. Fetal CBD exposure reduces the amplitude of glutamate uncaging-evoked excitatory post-synaptic currents, consistent with CBD-exposed female problem-solving behavior deficits. Combined, these data show that fetal CBD exposure disrupts neurodevelopment and postnatal behavior in a sex specific manner.


Assuntos
Canabidiol , Humanos , Gravidez , Masculino , Feminino , Camundongos , Animais , Canabidiol/farmacologia , Canabidiol/metabolismo , Óleo de Girassol/metabolismo , Córtex Pré-Frontal/metabolismo , Dor/metabolismo , Náusea/metabolismo
2.
Dev Biol ; 501: 111-123, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37353105

RESUMO

Smoking cigarettes during pregnancy is associated with adverse effects on infants including low birth weight, defective lung development, and skeletal abnormalities. Pregnant women are increasingly turning to vaping [use of electronic (e)-cigarettes] as a perceived safer alternative to cigarettes. However, nicotine disrupts fetal development, suggesting that like cigarette smoking, nicotine vaping may be detrimental to the fetus. To test the impact of maternal vaping on fetal lung and skeletal development in mice, pregnant dams were exposed to e-cigarette vapor throughout gestation. At embryonic day (E)18.5, vape exposed litter sizes were reduced, and some embryos exhibited growth restriction compared to air exposed controls. Fetal lungs were collected for histology and whole transcriptome sequencing. Maternally nicotine vaped embryos exhibited histological and transcriptional changes consistent with impaired distal lung development. Embryonic lung gene expression changes mimicked transcriptional changes observed in adult mouse lungs exposed to cigarette smoke, suggesting that the developmental defects may be due to direct nicotine exposure. Fetal skeletons were analyzed for craniofacial and long bone lengths. Nicotine directly binds and inhibits the Kcnj2 potassium channel which is important for bone development. The length of the maxilla, palatal shelves, humerus, and femur were reduced in vaped embryos, which was further exacerbated by loss of one copy of the Kcnj2 gene. Nicotine vapor exposed Kcnj2KO/+ embryos also had significantly lower birth weights than unexposed animals of either genotype. Kcnj2 mutants had severely defective lungs with and without vape exposure, suggesting that potassium channels may be broadly involved in mediating the detrimental developmental effects of nicotine vaping. These data indicate that intrauterine nicotine exposure disrupts fetal lung and skeletal development likely through inhibition of Kcnj2.


Assuntos
Vapor do Cigarro Eletrônico , Sistemas Eletrônicos de Liberação de Nicotina , Vaping , Feminino , Gravidez , Animais , Humanos , Camundongos , Vaping/efeitos adversos , Nicotina/efeitos adversos , Nicotina/metabolismo , Pulmão/metabolismo , Vapor do Cigarro Eletrônico/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...