Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
G3 (Bethesda) ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38979923

RESUMO

Substantial functional metabolic diversity exists within species of cultivated grain crops that directly or indirectly provide more than half of all calories consumed by humans around the globe. While such diversity is the molecular currency used for improving agronomic traits, diversity is poorly characterized for its effects on human nutrition and utilization by gut microbes. Moreover, we know little about agronomic traits' potential trade-offs and pleiotropic effects on human nutritional traits. Here we applied a quantitative genetics approach using a meta-analysis and parallel genome-wide association studies of Sorghum bicolor traits describing changes in the composition and function of human gut microbe communities and any of 200 sorghum seed and agronomic traits across a diverse sorghum population to identify associated genetic variants. A total of fifteen multiple-effect loci (MEL) were initially found where different alleles in the sorghum genome produced changes in seed that affected the abundance of multiple bacterial taxa across two human microbiomes in automated in vitro fermentations. Next, parallel genome-wide studies conducted for seed, biochemical, and agronomic traits in the same population identified significant associations within the boundaries of 13/15 MEL for microbiome traits. In several instances, the co-localization of variation affecting gut microbiome and agronomic traits provided hypotheses for causal mechanisms through which variation could affect both agronomic traits and human gut microbes. This work demonstrates that genetic factors affecting agronomic traits in sorghum seed can also drive significant effects on human gut microbes, particularly bacterial taxa considered beneficial. Understanding these pleiotropic relationships will inform future strategies for crop improvement toward yield, sustainability, and human health.

2.
Animals (Basel) ; 14(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38672291

RESUMO

A sanitary challenge was carried out to induce suboptimal herd health while investigating the effect of amino acids supplementation on piglet responses. Weaned piglets of high sanitary status (6.33 ± 0.91 kg of BW) were distributed in a 2 × 2 factorial arrangement into two similar facilities with contrasting sanitary conditions and two different diets. Our results suggest that increased Trp, Thr, and Met dietary supplementation could support the immune systems of piglets under a sanitary challenge. In this manner, AA+ supplementation improved the performance and metabolism of piglets under mixed management and poor sanitary conditions. No major temporal microbiome changes were associated with differences in performance regardless of sanitary conditions or diets. Since piglets often become mixed in multiple-site production systems and facility hygiene is also often neglected, this study suggests that increased Trp, Thr, and Met (AA+) dietary supplementation could contribute to mitigating the side effects of these harmful risk factors in modern pig farms.

3.
Front Vet Sci ; 10: 1186554, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781286

RESUMO

Swine are a major reservoir of an array of zoonotic Salmonella enterica subsp. enterica lineage I serovars including Derby, Typhimurium, and 4,[5],12:i:- (a.k.a. Monophasic Typhimurium). In this study, we assessed the gastrointestinal (GI) microbiome composition of pigs in different intestinal compartments and the feces following infection with specific zoonotic serovars of S. enterica (S. Derby, S. Monophasic, and S. Typhimurium). 16S rRNA based microbiome analysis was performed to assess for GI microbiome changes in terms of diversity (alpha and beta), community structure and volatility, and specific taxa alterations across GI biogeography (small and large intestine, feces) and days post-infection (DPI) 2, 4, and 28; these results were compared to disease phenotypes measured as histopathological changes. As previously reported, only S. Monophasic and S. Typhimurium induced morphological alterations that marked an inflammatory milieu restricted to the large intestine in this experimental model. S. Typhimurium alone induced significant changes at the alpha- (Simpson's and Shannon's indexes) and beta-diversity levels, specifically at the peak of inflammation in the large intestine and feces. Increased community dispersion and volatility in colonic apex and fecal microbiomes were also noted for S. Typhimurium. All three Salmonella serovars altered community structure as measured by co-occurrence networks; this was most prominent at DPI 2 and 4 in colonic apex samples. At the genus taxonomic level, a diverse array of putative short-chain fatty acid (SCFA) producing bacteria were altered and often decreased during the peak of inflammation at DPI 2 and 4 within colonic apex and fecal samples. Among all putative SCFA producing bacteria, Prevotella showed a broad pattern of negative correlation with disease scores at the peak of inflammation. In addition, Prevotella 9 was found to be significantly reduced in all Salmonella infected groups compared to the control at DPI 4 in the colonic apex. In conclusion, this work further elucidates that distinct swine-related zoonotic serovars of S. enterica can induce both shared (high resilience) and unique (altered resistance) alterations in gut microbiome biogeography, which helps inform future investigations of dietary modifications aimed at increasing colonization resistance against Salmonella through GI microbiome alterations.

4.
Gut Microbes ; 15(1): 2178799, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37610979

RESUMO

Waxy starches from cereal grains contain >90% amylopectin due to naturally occurring mutations that block amylose biosynthesis. Waxy starches have unique organoleptic characteristics (e.g. sticky rice) as well as desirable physicochemical properties for food processing. Using isogenic pairs of wild type sorghum lines and their waxy derivatives, we studied the effects of waxy starches in the whole grain context on the human gut microbiome. In vitro fermentations with human stool microbiomes show that beneficial taxonomic and metabolic signatures driven by grain from wild type parental lines are lost in fermentations of grain from the waxy derivatives and the beneficial signatures can be restored by addition of resistant starch. These undesirable effects are conserved in fermentations of waxy maize, wheat, rice and millet. We also demonstrate that humanized gnotobiotic mice fed low fiber diets supplemented with 20% grain from isogenic pairs of waxy vs. wild type parental sorghum have significant differences in microbiome composition and show increased weight gain. We conclude that the benefits of waxy starches on food functionality can have unintended tradeoff effects on the gut microbiome and host physiology that could be particularly relevant in human populations consuming large amounts of waxy grains.


Assuntos
Microbioma Gastrointestinal , Sorghum , Humanos , Animais , Camundongos , Amido/química , Grão Comestível/genética , Grão Comestível/metabolismo , Sorghum/química , Sorghum/genética , Sorghum/metabolismo , Amilopectina , Mutação
6.
Nat Commun ; 13(1): 5641, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-36163368

RESUMO

Prebiotic fibers, polyphenols and other molecular components of food crops significantly affect the composition and function of the human gut microbiome and human health. The abundance of these, frequently uncharacterized, microbiome-active components vary within individual crop species. Here, we employ high throughput in vitro fermentations of pre-digested grain using a human microbiome to identify segregating genetic loci in a food crop, sorghum, that alter the composition and function of human gut microbes. Evaluating grain produced by 294 sorghum recombinant inbreds identifies 10 loci in the sorghum genome associated with variation in the abundance of microbial taxa and/or microbial metabolites. Two loci co-localize with sorghum genes regulating the biosynthesis of condensed tannins. We validate that condensed tannins stimulate the growth of microbes associated with these two loci. Our work illustrates the potential for genetic analysis to systematically discover and characterize molecular components of food crops that influence the human gut microbiome.


Assuntos
Microbioma Gastrointestinal , Proantocianidinas , Sorghum , Produtos Agrícolas , Grão Comestível/genética , Microbioma Gastrointestinal/genética , Humanos , Polifenóis , Sementes/genética , Sorghum/genética
7.
Front Microbiol ; 13: 921456, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910657

RESUMO

The effects of fiber, complex carbohydrates, lipids, and small molecules from food matrices on the human gut microbiome have been increasingly studied. Much less is known about how dietary protein can influence the composition and function of the gut microbial community. Here, we used near-isogenic maize lines of conventional popcorn and quality-protein popcorn (QPP) to study the effects of the opaque-2 mutation and associated quality-protein modifiers on the human gut microbiome. Opaque-2 blocks the synthesis of major maize seed proteins (α-zeins), resulting in a compensatory synthesis of new seed proteins that are nutritionally beneficial with substantially higher levels of the essential amino acids lysine and tryptophan. We show that QPP lines stimulate greater amounts of butyrate production by human gut microbiomes in in vitro fermentation of popped and digested corn from parental and QPP hybrids. In human gut microbiomes derived from diverse individuals, bacterial taxa belonging to the butyrate-producing family Lachnospiraceae, including the genera Coprococcus and Roseburia were consistently increased when fermenting QPP vs. parental popcorn lines. We conducted molecular complementation to further demonstrate that lysine-enriched seed protein can stimulate growth and butyrate production by microbes through distinct pathways. Our data show that organisms such as Coprococcus can utilize lysine and that other gut microbes, such as Roseburia spp., instead, utilize fructoselysine produced during thermal processing (popping) of popcorn. Thus, the combination of seed composition in QPP and interaction of protein adducts with carbohydrates during thermal processing can stimulate the growth of health-promoting, butyrate-producing organisms in the human gut microbiome through multiple pathways.

8.
J Food Prot ; 84(12): 2159-2162, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34324674

RESUMO

ABSTRACT: Celiac disease and nonceliac gluten sensitivity are provoked by the consumption of gluten from wheat, barley, rye, and related grains. Affected individuals are advised to adhere to gluten-free diets. Recently, gluten-free foods have become a marketing trend with gluten-free options both in packaged foods and in restaurants and food service establishments. Pasta is one of the primary gluten-containing foods in diets in North America and Europe. Gluten-free pasta formulations are commercially available. In restaurants, multiple pasta dishes are often prepared simultaneously in large pots with multiple compartments and shared cooking water. The objective of this study was to determine whether gluten transfer occurs between traditional and gluten-free pasta when cooked simultaneously in the same water. Pasta was boiled in a commercial, four-compartment, 20-qt (18.9-L) cooking pot containing three batches of traditional penne pasta and one batch of gluten-free penne pasta. The amount of pasta (dry weight) was either 52 g (recommended serving size) or 140 g (typical restaurant portion). Five consecutive batches of pasta were boiled, and cooking water and gluten-free pasta were sampled at completion of cooking. Water and gluten-free pasta samples were tested for gluten with the Neogen Veratox for Gliadin enzyme-linked immunosorbent assay kit. Gluten concentrations were low (<20 ppm) in both water and gluten-free pasta samples through five 52-g batches. Gluten concentrations in the 52-g gluten-free pasta samples slowly increased through five batches but were never >20 ppm. During cooking of the 140-g gluten-free pasta samples, the gluten concentrations in the cooking water increased with each batch to >50 and >80 ppm after the fourth and fifth batches, respectively. The gluten concentrations in the 140-g gluten-free pasta samples approached 20 ppm by the fourth batch and reached nearly 40 ppm after the fifth batch. Although gluten transfer does not occur at a high rate, gluten-free pasta should be prepared in a separate cooking vessel in restaurant and food service establishments.


Assuntos
Glutens , Restaurantes , Culinária , Farinha/análise , Humanos , Triticum
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA