Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(16): 11522-11529, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37039328

RESUMO

Self-assembly of modified amino acids facilitate the formation of various structures that have unique properties and therefore serve as excellent bio-organic scaffolds for diverse applications. Self-assembly of Fmoc protected single amino acids has attracted great interest owing to their ease of synthesis and applications as functional materials. Smaller assembly units enable synthetic convenience and potentially broader adoption. Herein, we demonstrate the ability to control the morphologies resulting from self-assembly of Fmoc modified aliphatic single amino acids (Fmoc-SAAs) namely, Alanine, Valine, Leucine, Isoleucine, and Proline. Controlled morphological transitions were observed through solvent variation and the mechanism that allows this control was investigated using coarse-grained molecular dynamics simulations. These show that FmocA can form well defined crystalline structures through uniform parallel Fmoc stacking and the optimization of ion concentrations, which is not observed for the other Fmoc-SAAs. We demonstrate that Fmoc protected aliphatic single amino acids are novel scaffolds for the design of distinct micro/nanostructures through a bottom-up approach that can be tuned by control of the environmental parameters.


Assuntos
Aminoácidos , Nanoestruturas , Solventes , Aminoácidos/química , Nanoestruturas/química , Leucina , Simulação de Dinâmica Molecular , Fluorenos/química
2.
Chem Asian J ; 18(9): e202300044, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36945757

RESUMO

We report the photophysical properties, self-assembly and biological evaluation of an isothiazolanthrone-based dye, 7-amino-6H-anthra[9,1-cd]isothiazol-6-one (AAT), which reveals anticancer properties and can be potentially used as dye for monitoring cell viability. The solvent-dependent photophysical studies suggest that the emission of AAT is sensitive to environment polarity due to which interesting changes in the colored emission may be observed owing to the charge transfer (CT) processes. AAT also self-assembles to tree-like branched morphologies and produce, a greenish emission inside the cells when imaged after short interval (15 mins) of incubation while a red fluorescence could be noted after 24 h. Interestingly, AAT also produce differential emission inside mouse normal cells as compared to its cancer cell lines since it possess anticancer activity. The experimental observations were also validated theoretically via computational modeling.


Assuntos
Espectrometria de Fluorescência , Animais , Camundongos , Espectrometria de Fluorescência/métodos , Sobrevivência Celular , Linhagem Celular , Solventes
3.
Soft Matter ; 18(15): 3019-3030, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35355041

RESUMO

We report for the very first time the crystal structure and self-assembly of a new aggregation-induced emission enhancement (AIEE) dye 4-(5-methoxythiazolo[4,5-b]pyridin-2-yl)-N,N-dimethylaniline (TPA) and its application in sensing dichromate ions. TPA reveals cyan blue emission under UV and visible light. The self-assembly properties of TPA were studied extensively by scanning electron microscopy (SEM) which revealed the formation of beautiful flower-like morphologies. These structures revealed both green and red fluorescence under FITC and rhodamine filters respectively when observed through fluorescence microscopy connoting the panchromatic emission properties of TPA from blue to red. The interactions which cause self-assembled structure formation in TPA were also validated theoretically using density functional theory (DFT) calculations. Crystal and molecular structure analysis of TPA was carried out via single-crystal X-ray diffraction to visualize the intermolecular interactions occurring in the solid-state and to study the structure-photophysical property relationship in the aggregated state. The photophysical properties of TPA were also studied extensively by UV-visible and fluorescence spectroscopy and its quantum yield and fluorescence lifetime were calculated by time-correlated single-photon counting (TCSPC). Interestingly, TPA could efficiently sense dichromate (Cr2O72-) ions in an acidic medium and an interesting morphological transition from a fluorescent flower to non-fluorescent disassembled structures could also be observed. The limit of detection of TPA for Cr2O72- ions was found to be as low as 5.5 nM, suggesting its exceptional sensitivity. More importantly, TPA could selectively sense Cr2O72- ions in real water samples even in the presence of other metal ions routinely present in polluted water, hence making it practically useful for water quality monitoring.

4.
ACS Chem Neurosci ; 12(17): 3237-3249, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34406754

RESUMO

There is a plethora of significant research that illustrates toxic self-assemblies formed by the aggregation of single amino acids, such as phenylalanine, tyrosine, tryptophan, cysteine, and methionine, and their implication on the etiology of inborn errors of metabolisms (IEMs), such as phenylketonuria, tyrosinemia, hypertryptophanemia, cystinuria, and hypermethioninemia, respectively. Hence, studying the aggregation behavior of single amino acids is very crucial from the chemical neuroscience perspective to understanding the common etiology between single amino acid metabolite disorders and amyloid diseases like Alzheimer's and Parkinson's. Herein we report the aggregation properties of nonaromatic single amino acids l-proline (Pro), l-hydroxyproline (Hyp), and l-lysine hydrochloride (Lys). The morphologies of the self-assembled structures formed by Pro, Hyp, and Lys were extensively studied by various microscopic techniques, and controlled morphological transitions were observed under varied concentrations and aging times. The mechanism of structure formation was deciphered by concentration-dependent 1H NMR analysis, which revealed the crucial role of hydrogen bonding and hydrophobic interactions in the structure formation of Pro, Hyp, and Lys. MTT assays on neural (SHSY5Y) cell lines revealed that aggregates formed by Pro, Hyp, and Lys reduced cell viability in a dose-dependent manner. These results may have important implications in the understanding of the patho-physiology of disorders such as hyperprolinemia, hyperhydroxyprolinemia, and hyperlysinemia since all these IEMs are associated with severe neurodegenerative symptoms, including intellectual disability, seizures, and psychiatric problems. Our future studies will endeavor to study these biomolecular assemblies in greater detail by immuno-histochemical analysis and advanced biophysical assays.


Assuntos
Lisina , Prolina , Aminoácidos , Hidroxiprolina , Tirosina
5.
ACS Chem Neurosci ; 12(15): 2851-2864, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34264635

RESUMO

The diphenylalanine (FF) residue which is present at the 19 and 20 positions of the amyloid beta (1-42) (Aß42) peptide sequence is considered as a reductionist model for studying Aß42 aggregation. FF self-assembles into well-ordered tubular structures via aromatic π-π stacking. Herein the manuscript, we have presented a chemical perspective on the mechanism of action of antiamyloid compounds by assessing their interaction with FF. Therefore, we first coincubated FF fibers with single amino acids, since they are constituted of different R side chains yet have a common structural unit. This study revealed a crucial role of aromatic rings and functional groups like thiol (-SH) in causing destabilization of FF assembly via their interaction with π-electrons participating in π-π stacking present in FF. We further studied the interaction of different nonsteroidal anti-inflammatory drugs (NSAIDs), other known antiamyloidogenic compounds, and host-guest inclusion compounds like cyclodextrin (CD) to assess their mechanism of action and to decipher the functional moiety present in these compounds which could cause destabilization of π-π stacking. From the coincubation experiments, we could surmise a crucial role of aromatic rings present in these compounds for causing interference in aromatic stacking. We further consolidated our observations through microscopy analysis by various spectroscopic methods such as aggregation-induced emission enhancement (AIEE), fluorescence spectroscopy, solution-state 1H NMR, FTIR, and circular dichroism. The studies presented in the manuscript thus provide significant insights into the role of functional groups in imparting antiamyloid action and open new avenues for an efficient design of antiamyloid drugs in the future.


Assuntos
Aminoácidos , Peptídeos beta-Amiloides , Dicroísmo Circular , Elétrons , Espectroscopia de Ressonância Magnética
6.
Soft Matter ; 17(16): 4304-4316, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33908562

RESUMO

We report, for the first time, the self-assembly of an acyl-thiourea based sensor, N-{(6-methoxy-pyridine-2-yl) carbamothioyl}benzamide (NG1), with panchromatic fluorescent fibres and its dual-sensing properties for the sequential detection of Cu2+ ions and lactic acid. The panchromatic fibres formed by NG1 were disrupted in the presence of Cu2+ ions and this was accompanied by a visible colour change in the solution from colourless to yellow. The addition of lactic acid to the NG1 + Cu2+ solution, on the other hand, induced re-aggregation to fibrillar structures and the colour of the solution again changed to colourless. Hence, it may be surmised that the disaggregation and re-aggregation impart unique dual-sensing properties to NG1 for the sequential detection of Cu2+ ions and lactic acid. The application of NG1 as a selective sensor for Cu2+ ions and lactic acid has been assessed in detail by UV-visible and fluorescence spectroscopy. Furthermore, two structural variants of NG1, namely, NG2 and NG3, were synthesized, which suggest the crucial role of pyridine in imparting panchromatic emission properties and of both pyridine and acyl-thiourea side chain in the binding of Cu2+ ions. The O-methoxy group plays an important part in making NG1 the most sensitive probe of its structural analogs. Finally, the utility of NG1 for the sequential and cellular detection of Cu2+ ions and lactic acid was studied in human RPE cells. The experimental results of the interaction of NG1 with Cu2+ ions and lactic acid have also been validated theoretically by using quantum chemical calculations based on density functional theory (DFT). To the best of our knowledge, this is the first report wherein a dual sensor for Cu2+ ions and lactate ions is synthesized. More importantly, the aggregation properties of the sensor have been studied extensively and an interesting correlation of the photophysical properties of the probe with its self-assembling behavior has been elucidated.


Assuntos
Cobre , Ácido Láctico , Corantes , Corantes Fluorescentes , Humanos , Íons , Espectrometria de Fluorescência
7.
ACS Appl Bio Mater ; 2(10): 4442-4455, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-35021404

RESUMO

We report the aggregation and photophysical properties of a pyridothiazole-based, aggregation-induced, emission-enhancement (AIEE) luminogen 4-(5-methoxy-thiazolo[4,5-b]pyridin-2-yl)benzoic acid (PTC1) and its application for the sensitive detection and monitoring of amyloid fibrillation. The aggregation properties of the AIEE probe were extensively studied by atomic force microscopy (AFM) and dynamic light scattering (DLS), and it was noted that as aggregation increases the fluorescence of PTC1 also was increased. The fluorescence of PTC1 was quenched upon the addition of cupric (Cu2+) ions, while the fluorescence is regenerated in the presence of amyloid fibers. AFM studies reveal that the PTC1 molecules self-associate/aggregate to hairy micelle-like structures, which dissociate or disrupt in the presence of the Cu2+ ions and again reassemble in the presence of amyloid fibers. Hence, the quenching and regeneration of PTC1 fluorescence may be attributed to the disaggregation and aggregation-induced emission (AIE), respectively. Further, a comparative analysis of the performance of PTC1 was done with conventional Thioflavin T, which confirms it to be a more sensitive probe for the detection of the amyloid, both in the presence and absence of Cu2+ ions. The experimental results were also validated theoretically via molecular docking and simulation studies. Of note, a very simple, facile, and cost-effective methodology for the detection of the amyloid fibers is presented, wherein fluorescence quenching/enhancement can be visualized under the UV light without the use of sophisticated instrumentation techniques. The AIEE probe was designed using an unusual pyridothiazole scaffold unlike commonly used archetypal AIE scaffolds based on tetraphenylethene (TPE) and hexaphenylsilole (HPS). Hence, the work also has implications in designing future AIEE dyes based on the pyridothiazole scaffold reported.

8.
ACS Chem Neurosci ; 10(3): 1230-1239, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30380833

RESUMO

We report for the very first time the discovery of amyloid-like self-assemblies formed by the nonaromatic single amino acids cysteine (Cys) and methionine (Met) under neutral aqueous conditions. The structure formation was assessed and characterized by various microscopic and spectroscopic techniques such as optical microscopy, phase contrast microscopy, scanning electron microscopy, and transmission electron microscopy. The mechanism of self-assembly and the role of hydrogen bonding and thiol interactions of Cys and Met were assessed by Fourier transform infrared spectroscopy, thermogravimetric analysis, X-ray diffraction, and solid state NMR along with various control experiments. In addition, molecular dynamics simulations were carried out to gain insight into assembly initiation. Further, Thioflavin T and Congo red binding assays with Cys and Met structures indicated that these single amino acid assemblies may have amyloid-like characteristics. To understand the biological significance of the Cys and Met structures, cytotoxicity assays of the assemblies were performed on human neuroblastoma IMR-32 cells and monkey kidney cells (COS-7). The results revealed that both Cys and Met fibers were cytotoxic. The cell viability assay further supported the hypothesis that aggregation of single amino acid may contribute to the etiology of metabolic disorders like cystinuria and hypermethioninemia. The results presented in this study are striking, and to the best of our knowledge this is the first report which demonstrates that nonaromatic amino acids like Cys and Met can undergo spontaneous self-assembly to form amyloidogenic aggregates. The results presented are also consistent with the established generic amyloid hypothesis and support a new paradigm for the study of the etiology of single amino acid initiated metabolic disorders in amyloid related diseases.


Assuntos
Amiloide/química , Cisteína/química , Metionina/química , Amiloide/metabolismo , Animais , Células COS , Linhagem Celular Tumoral , Sobrevivência Celular , Chlorocebus aethiops , Cisteína/metabolismo , Humanos , Ligação de Hidrogênio , Metionina/metabolismo , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...