Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Aging Sci ; 17(2): 144-155, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38279735

RESUMO

BACKGROUND: Aging is associated with the slowing down of metabolic processes, diminished physiological processes, changes in hormonal activity and increasing exposure to oxidative stress factors and chronic inflammation. The endocannabinoid system (ECS) is a major signaling network that plays a pro-homeostatic role in the central and peripheral organs of the human body. A class of minor lipids, N-acylethanolamines (NAEs), which do not activate cannabinoid receptors, except for anandamide, but can potentiate the action of endocannabinoids and have a wide spectrum of biological activity and significant adaptogenic potential, belongs to ECS. The results of different studies over the past decades have established the protective effect of NAE on many pathological conditions. OBJECTIVE: This study aimed to investigate the cardioprotective effects of C18:0 NAE- N-stearoylethanolamine (NSE) in aged rats. In this study, we focused on investigating the effects of C18:0 NAE- N-stearoylethanolamine (NSE) on the intensity of oxidative/ nitrosative stress, antioxidant potential, lipoprotein profile and inflammation markers of blood plasma, phospholipid composition and age-related morphological changes of old rat heart tissues. METHODS: The study was conducted on Sprague Dawley male laboratory rats. The three groups of rats were involved in the study design. The first group consisted of young rats aged 4 months (n=10). The second (n=10) and third (n=10) groups included old rats aged of 18 months. Rats from the third group were administered a per os aqueous suspension of NSE at a dose of 50 mg/kg of body weight daily for 10 days. All groups of rats were kept on a standard vivarium diet. The blood plasma, serum, and heart of rats were used for biochemical and histological analysis. RESULTS: The cardioprotective effect of N-stearoylethanolamine in old rats was established, which was expressed in the normalization of the antioxidant system condition and the level of proinflammatory cytokines, positive modulation of blood plasma and lipoprotein profile, normalization of heart tissue lipid composition, and significant reduction in age-related myocardium morphological changes. CONCLUSION: The revealed effects of N-stearoylethanolamine can become the basis for developing a new drug for use in complex therapy to improve the quality of life of older people.


Assuntos
Envelhecimento , Etanolaminas , Miocárdio , Estresse Oxidativo , Ratos Sprague-Dawley , Animais , Masculino , Etanolaminas/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Envelhecimento/efeitos dos fármacos , Envelhecimento/metabolismo , Envelhecimento/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Ácidos Esteáricos/farmacologia , Antioxidantes/farmacologia , Fatores Etários , Estresse Nitrosativo/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Cardiotônicos/farmacologia , Ratos
2.
Biochim Biophys Acta Biomembr ; 1865(8): 184213, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37582415

RESUMO

An ATP-induced increase of [Ca2+]m in myometrium mitochondria matrix at the absence of exogenous Ca2+ was shown. An ATP-induced increase of Сa2+ efflux from mitochondria ([Сa2+]o) has also been shown. Mitochondria membranes were polarized upon incubation in both Mg2+- and Mg2+,ATP-medium. Cardiolipin (CL) content in mitochondria membranes decreased upon incubation of organelles in Mg2+,ATP-medium as compared to Mg2+-medium. It was suggested that ATP could play the role of a signaling molecule regulating the Ca2+ exchange in the mitochondria.


Assuntos
Cardiolipinas , Mitocôndrias , Feminino , Humanos , Cardiolipinas/metabolismo , Membranas Mitocondriais/metabolismo , Miométrio/metabolismo , Trifosfato de Adenosina/metabolismo
3.
Pharmaceutics ; 15(3)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36986696

RESUMO

This study reports a dose-dependent pro-apoptotic action of synthetic cannabimimetic N-stearoylethanolamine (NSE) on diverse cancer cell lines, including multidrug-resistant models. No antioxidant or cytoprotective effects of NSE were found when it was applied together with doxorubicin. A complex of NSE with the polymeric carrier poly(5-(tert-butylperoxy)-5-methyl-1-hexen-3-yn-co-glycidyl methacrylate)-graft-PEG was synthesized. Co-immobilization of NSE and doxorubicin on this carrier led to a 2-10-fold enhancement of the anticancer activity, particularly, against drug-resistant cells overexpressing ABCC1 and ABCB1. This effect might be caused by accelerated nuclear accumulation of doxorubicin in cancer cells, which led to the activation of the caspase cascade, revealed by Western blot analysis. The NSE-containing polymeric carrier was also able to significantly enhance the therapeutic activity of doxorubicin in mice with implanted NK/Ly lymphoma or L1210 leukemia, leading to the complete eradication of these malignancies. Simultaneously, loading to the carrier prevented doxorubicin-induced elevation of AST and ALT as well as leukopenia in healthy Balb/c mice. Thus, a unique bi-functionality of the novel pharmaceutical formulation of NSE was revealed. It enhanced doxorubicin-induced apoptosis in cancer cells in vitro and promoted its anticancer activity against lymphoma and leukemia models in vivo. Simultaneously, it was very well tolerated preventing frequently observed doxorubicin-associated adverse effects.

4.
J Pharmacol Exp Ther ; 383(1): 2-10, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35963618

RESUMO

N-stearoylethanolamine (NSE), a lipid mediator that belongs to the N-acylethanolamine (NAE) family, has anti-inflammatory, antioxidant, and membranoprotective actions. In contrast to other NAEs, NSE does not interact with cannabinoid receptors. The exact mechanism of its action remains unclear. The aim of this study is to evaluate the action of NSE on activation, aggregation, and adhesion of platelets that were chosen as a model of cellular response. Aggregation of platelets was measured to analyze the action of NSE (10-6-10-10 M) on platelet reactivity. Changes in granularity and shape of resting platelets and platelets stimulated with ADP in the presence of NSE were monitored by flow cytometry, and platelet deganulation was monitored by spectrofluorimetry. In vivo studies were performed using obese insulin-resistant rats. Binding of fibrinogen to the GPIIb/IIIa receptor was estimated using indirect ELISA and a scanning electron microscopy (SEM). It was found that NSE inhibits the activation and aggregation of human platelets. Our results suggest that NSE may decrease the activation and subsequent aggregation of platelets induced by ristocetin, epinephrine, and low doses of ADP. NSE also reduced the binding of fibrinogen to GPIIb/IIIa on activated platelets. These effects could be explained by the inhibition of platelet activation mediated by integrin receptors: the GPIb-IX-V complex for ristocetin-induced activation and GPIIb/IIIa when epinephrine and low doses of ADP were applied. The anti-platelet effect of NSE complements its anti-inflammatory effect and allows us to prioritize studies of NSE as a potent anti-thrombotic agent. SIGNIFICANCE STATEMENT: N-stearoylethanolamine (NSE) was shown to possess inhibitory action on platelet activation, adhesion, and aggregation. The mechanism of inhibition possibly involves integrin receptors. This finding complements the known anti-inflammatory effects of NSE.


Assuntos
Agregação Plaquetária , Ristocetina , Difosfato de Adenosina/metabolismo , Difosfato de Adenosina/farmacologia , Animais , Plaquetas , Epinefrina/metabolismo , Epinefrina/farmacologia , Etanolaminas , Fibrinogênio/metabolismo , Fibrinogênio/farmacologia , Humanos , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/farmacologia , Ratos , Ristocetina/metabolismo , Ristocetina/farmacologia , Ácidos Esteáricos
5.
Wiad Lek ; 74(2): 241-246, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33813479

RESUMO

OBJECTIVE: The aim: To determine the set of structural and functional changes in pancreatic islets (PI) of obesity-induced insulin resistant (IR) rats of different age (young and old) fed with prolonged (6 month) high-fat diet (HFD) (58% of fat) and further treatment with N-Stearoylethanolamine (NSE), a bioactive N-Acylethanolamine. PATIENTS AND METHODS: Materials and methods: Alimentary obesity-induced IR model in rats of two age groups was used to investigate the influence of age and NSE treatment on pancreas morphology (using histological, histochemical and immunohistochemical techniques) and on several biochemical parameters associated with DM onset. RESULTS: Results: The NSE administration normalized pancreas morphology which was more affected in the old IR group; the signs of inflammation, edema, fibrosis and steatosis were somehow diminished and PI area became significantly increased. The amount of the A-F-positive insulocytes increased and TUNEL-positive - decreased. Compensatory hyperplasia in the affected pancreas of both age was an important indicator of NSE stimulating effect. CONCLUSION: Conclusions: Protective effects of NSE on morpho-functional state of pancreas in HFD-induced IR rats of both age are associated not only with its anti-inflammatory, anti-oxidant and anti-dyslipidemic properties but also with activation of PI hyperplasia and ß-cells compensatory mechanisms.


Assuntos
Resistência à Insulina , Dieta Hiperlipídica/efeitos adversos , Humanos , Insulina , Obesidade/tratamento farmacológico , Pâncreas
6.
Front Microbiol ; 11: 1268, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32676055

RESUMO

Outer membrane vesicles (OMVs), produced by nonpathogenic Gram-negative bacteria, have potentially useful biotechnological applications in extraterrestrial extreme environments. However, their biological effects under the impact of various stressors have to be elucidated for safety reasons. In the spaceflight experiment, model biofilm kombucha microbial community (KMC) samples, in which Komagataeibacter intermedius was a dominant community-member, were exposed under simulated Martian factors (i.e., pressure, atmosphere, and UV-illumination) outside the International Space Station (ISS) for 1.5 years. In this study, we have determined that OMVs from post-flight K. intermedius displayed changes in membrane composition, depending on the location of the samples and some other factors. Membrane lipids such as sterols, fatty acids (FAs), and phospholipids (PLs) were modulated under the Mars-like stressors, and saturated FAs, as well as both short-chain saturated and trans FAs, appeared in the membranes of OMVs shed by both post-UV-illuminated and "dark" bacteria. The relative content of zwitterionic and anionic PLs changed, producing a change in surface properties of outer membranes, thereby resulting in a loss of interaction capability with polynucleotides. The changed composition of membranes promoted a bigger OMV size, which correlated with changes of OMV fitness. Biochemical characterization of the membrane-associated enzymes revealed an increase in their activity (DNAse, dehydrogenase) compared to wild type. Other functional membrane-associated capabilities of OMVs (e.g., proton accumulation, interaction with linear DNA, or synaptosomes) were also altered after exposure to the spaceflight stressors. Despite alterations in membranes, vesicles did not acquire endotoxicity, cytotoxicity, and neurotoxicity. Altogether, our results show that OMVs, originating from rationally selected nonpathogenic Gram-negative bacteria, can be considered as candidates in the design of postbiotics or edible mucosal vaccines for in situ production in extreme environment. Furthermore, these OMVs could also be used as promising delivery vectors for applications in Astromedicine.

7.
Int Immunopharmacol ; 52: 290-296, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28963942

RESUMO

Neuroinflammation is an important risk factor for neurodegenerative disorders like Alzheimer's disease. Nicotinic acetylcholine receptors of α7 subtype (α7 nAChRs) regulate inflammatory processes in various tissues, including the brain. N-stearoylethanolamine (NSE) is a biologically active cell membrane component with anti-inflammatory and membrane-protective properties. Previously we found that mice injected with bacterial lipopolysaccharide (LPS) or immunized with recombinant extracellular domain (1-208) of α7 nAChR subunit possessed decreased α7 nAChR levels, accumulated pathogenic amyloid-beta peptide Aß(1-42) in the brain and demonstrated impaired episodic memory compared to non-treated mice. Here we studied the effect of NSE on behavior and brain components of LPS- treated or α7(1-208)-immunized mice. NSE, given per os, non-significantly decreased LPS-stimulated interleukin-6 elevation in the brain, slowed down the α7(1-208)-specific IgG antibody production and prevented the antibody penetration into the brain of mice. NSE prevented the loss of α7 nAChRs and accumulation of α7-bound Aß(1-42) in the brain and brain mitochondria of LPS-treated or α7(1-208)-immunized mice and supported mitochondria resistance to apoptosis by attenuating Ca2+-stimulated cytochrome c release. Finally, NSE significantly improved episodic memory of mice impaired by either LPS treatment or immunization with α7(1-208). The results of our study demonstrate a therapeutic potential of NSE for prevention of cognitive disfunction caused by neuroinflammation or autoimmune reaction that allows suggesting this drug as a candidate for the treatment or prophylaxis of Alzheimer's pathology.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Anti-Inflamatórios/uso terapêutico , Encéfalo/metabolismo , Etanolaminas/uso terapêutico , Mitocôndrias/metabolismo , Inflamação Neurogênica/tratamento farmacológico , Fragmentos de Peptídeos/metabolismo , Ácidos Esteáricos/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Encéfalo/patologia , Citocromos c/metabolismo , Feminino , Humanos , Imunização , Lipopolissacarídeos/imunologia , Memória , Camundongos , Camundongos Endogâmicos C57BL , Neuroproteção , Domínios Proteicos/imunologia , Receptor Nicotínico de Acetilcolina alfa7/imunologia , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
8.
Prostaglandins Other Lipid Mediat ; 121(Pt A): 91-6, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25997585

RESUMO

N-Stearoylethanolamine (NSE) is a minor lipid that belongs to the N-Acylethanolamines family that mediates a wide range of biological processes. This study investigates the mechanisms of anti-inflammatory action of NSE on different model systems. Namely, we estimated the effect of NSE on inflammatory cytokines mRNA level (leukemia cells L1210), cytokines content (serum and LPS-stimulated macrophages) and nuclear translocation of NF-κB (peritoneal macrophages LPS-stimulated and isolated from rats with obesity-induced insulin resistance). The results indicated that NSE dose-dependently inhibits the IL-1 and IL-6 mRNA level in L1210 cells. Furthermore, the NSE treatment triggered a normalization of serum TNF-α level in insulin resistant rats and a reduction of medium IL-1 level in LPS-activated peritoneal macrophages. These NSE's effects were associated with the inhibition of nuclear NF-κB translocation in rat peritoneal macrophages.


Assuntos
Anti-Inflamatórios/farmacologia , Citocinas/biossíntese , Etanolaminas/farmacologia , NF-kappa B/metabolismo , Ácidos Esteáricos/farmacologia , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Animais , Peso Corporal/efeitos dos fármacos , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Citocinas/sangue , Citocinas/genética , Relação Dose-Resposta a Droga , Insulina/sangue , Resistência à Insulina , Lipopolissacarídeos/farmacologia , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Camundongos , Obesidade/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA