Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
DNA Repair (Amst) ; 104: 103136, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34044336

RESUMO

Photodynamic therapy (PDT) is a clinically approved cancer therapy of low invasiveness. The therapeutic procedure involves administering a photosensitizing drug (PS), which is then activated with monochromatic light of a specific wavelength. The photochemical reaction produces highly toxic oxygen species. The development of resistance to PDT in some cancer cells is its main limitation. Several mechanisms are known to be involved in the development of cellular defense against cytotoxic effects of PDT, including activation of antioxidant enzymes, drug efflux pumps, degradation of PS, and overexpression of protein chaperons. Another putative factor that plays an important role in the development of resistance of cancer cells to PDT seems to be DNA repair; however, it has not been well studied so far. To explore the role of DNA repair and other potential novel mechanisms associated with the resistance to PDT in the glioblastoma cells, cells stably resistant to PDT were isolated from PDT sensitive cells following repetitive PDT cycles. Duly characterization of isolated PDT-resistant glioblastoma revealed that the resistance to PDT might be a consequence of several mechanisms, including higher repair efficiency of oxidative DNA damage and repair of DNA breaks. Higher activity of APE1 endonuclease and increased expression and activation of DNA damage kinase ATM was demonstrated in the U-87 MGR cell line, suggesting and proving that they are good targets for sensitization of resistant cells to PDT.


Assuntos
Dano ao DNA , Reparo do DNA , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/tratamento farmacológico , Fotoquimioterapia , Linhagem Celular Tumoral , Ensaio Cometa , Quebras de DNA , DNA de Neoplasias/metabolismo , Glioblastoma/genética , Glioblastoma/fisiopatologia , Humanos , Estresse Oxidativo
2.
Artigo em Inglês | MEDLINE | ID: mdl-32265045

RESUMO

Professor Barbara Tudek received the Frits Sobels Award in 2019 from the European Environmental Mutagenesis and Genomics Society (EEMGS). This article presents her outstanding character and most important lines of research. The focus of her studies covered alkylative and oxidative damage to DNA bases, in particular mutagenic and carcinogenic properties of purines with an open imidazole ring and 8-oxo-7,8-dihydroguanine (8-oxoGua). They also included analysis of mutagenic properties and pathways for the repair of DNA adducts of lipid peroxidation (LPO) products arising in large quantities during inflammation. Professor Tudek did all of this in the hope of deciphering the mechanisms of DNA damage removal, in particular by the base excision repair (BER) pathway. Some lines of research aimed at discovering factors that can modulate the activity of DNA damage repair in hope to enhance existing anti-cancer therapies. The group's ongoing research aims at deciphering the resistance mechanisms of cancer cell lines acquired following prolonged exposure to photodynamic therapy (PDT) and the possibility of re-sensitizing cells to PDT in order to increase the application of this minimally invasive therapeutic method.


Assuntos
Carcinogênese/metabolismo , Reparo do DNA , Guanina/análogos & derivados , Neoplasias/história , Fotoquimioterapia/história , Radiossensibilizantes/uso terapêutico , Animais , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/metabolismo , Carcinogênese/genética , Carcinogênese/patologia , Linhagem Celular Tumoral , Adutos de DNA/química , Adutos de DNA/metabolismo , Dano ao DNA , Guanina/metabolismo , História do Século XX , História do Século XXI , Humanos , Peroxidação de Lipídeos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Fotoquimioterapia/métodos
3.
Free Radic Biol Med ; 124: 79-96, 2018 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-29860127

RESUMO

Lipid peroxidation (LPO) products are relatively stable and abundant metabolites, which accumulate in tissues of mammals with aging, being able to modify all cellular nucleophiles, creating protein and DNA adducts including crosslinks. Here, we used cells and mice deficient in the ERCC1-XPF endonuclease required for nucleotide excision repair and the repair of DNA interstrand crosslinks to ask if specifically LPO-induced DNA damage contributes to loss of cell and tissue homeostasis. Ercc1-/- mouse embryonic fibroblasts were more sensitive than wild-type (WT) cells to the LPO products: 4-hydroxy-2-nonenal (HNE), crotonaldehyde and malondialdehyde. ERCC1-XPF hypomorphic mice were hypersensitive to CCl4 and a diet rich in polyunsaturated fatty acids, two potent inducers of endogenous LPO. To gain insight into the mechanism of how LPO influences DNA repair-deficient cells, we measured the impact of the major endogenous LPO product, HNE, on WT and Ercc1-/- cells. HNE inhibited proliferation, stimulated ROS and LPO formation, induced DNA base damage, strand breaks, error-prone translesion DNA synthesis and cellular senescence much more potently in Ercc1-/- cells than in DNA repair-competent control cells. HNE also deregulated base excision repair and energy production pathways. Our observations that ERCC1-deficient cells and mice are hypersensitive to LPO implicates LPO-induced DNA damage in contributing to cellular demise and tissue degeneration, notably even when the source of LPO is dietary polyunsaturated fats.


Assuntos
Senescência Celular , Dano ao DNA , Reparo do DNA , Proteínas de Ligação a DNA/fisiologia , Endonucleases/fisiologia , Peroxidação de Lipídeos , Estresse Oxidativo , Animais , Proliferação de Células , Camundongos , Camundongos Knockout , Espécies Reativas de Oxigênio/metabolismo
4.
Nanomedicine (Lond) ; 12(18): 2183-2197, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28820020

RESUMO

AIM: Developing pH-responsive multiple emulsion platforms for effective glioblastoma multiforme therapy with reduced toxicity, a drug release study and modeling. MATERIALS & METHODS: Cancer cell line: U87 MG, multiple emulsions with pH-responsive biopolymer and encapsulated doxorubicin (DOX); preparation of multiple emulsions in a Couette-Taylor flow biocontactor, in vitro release study of DOX (fluorescence intensity analysis), in vitro cytotoxicity study (alamarBlue cell viability assay) and numerical simulation of DOX release rates. RESULTS: The multiple emulsions offered a high DOX encapsulation efficiency (97.4 ± 1%) and pH modulated release rates of a drug. Multiple emulsions with a low concentration of DOX (0.02 µM) exhibited broadly advanced cell (U87 MG) cytotoxicity than free DOX solution used at the same concentration. CONCLUSION: Emulsion platforms could be explored for potential delivery of chemotherapeutics in glioblastoma multiforme therapy.


Assuntos
Antineoplásicos/administração & dosagem , Antineoplásicos/química , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Emulsões/química , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Sobrevivência Celular , Simulação por Computador , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Glioblastoma/tratamento farmacológico , Humanos , Concentração de Íons de Hidrogênio , Tamanho da Partícula , Propriedades de Superfície
5.
Biotechnol J ; 12(8)2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28497498

RESUMO

The ability to preserve stem cells/cells with minimal damage for short and long periods of time is essential for advancements in biomedical therapies and biotechnology. New methods of cell banking are continuously needed to provide effective damage prevention to cells. This paper puts forward a solution to the problem of the low viability of cells during cryopreservation in a traditional suspension and storage by developing innovative multiple emulsion-based carriers for the encapsulation and cryopreservation of cells. During freezing-thawing processes, irreversible damage to cells occurs as a result of the formation of ice crystals, cell dehydration, and the toxicity of cryoprotectant. The proposed method was effective due to the "flexible" protective structure of multiple emulsions, which was proven by a high cell survival rate, above 90%. Results make new contributions in the fields of cell engineering and biotechnology and contribute to the development of methods for banking biological material.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Criopreservação/métodos , Crioprotetores/química , Células-Tronco Mesenquimais/citologia , Engenharia Celular/tendências , Crioprotetores/farmacologia , Emulsões/química , Emulsões/farmacologia , Congelamento , Células-Tronco Mesenquimais/efeitos dos fármacos
6.
Free Radic Biol Med ; 107: 77-89, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27908783

RESUMO

Exocyclic adducts to DNA bases are formed as a consequence of exposure to certain environmental carcinogens as well as inflammation and lipid peroxidation (LPO). Complex family of LPO products gives rise to a variety of DNA adducts, which can be grouped in two classes: (i) small etheno-type adducts of strong mutagenic potential, and (ii) bulky, propano-type adducts, which block replication and transcription, and are lethal lesions. Etheno-DNA adducts are removed from the DNA by base excision repair (BER), AlkB and nucleotide incision repair enzymes (NIR), while substituted propano-type lesions by nucleotide excision repair (NER) and homologous recombination (HR). Changes of the level and activity of several enzymes removing exocyclic adducts from the DNA was reported during carcinogenesis. Also several beyond repair functions of these enzymes, which participate in regulation of cell proliferation and growth, as well as RNA processing was recently described. In addition, adducts of LPO products to proteins was reported during aging and age-related diseases. The paper summarizes pathways for exocyclic adducts removal and describes how proteins involved in repair of these adducts can modify pathological states of the organism.


Assuntos
Adutos de DNA/metabolismo , Dano ao DNA , DNA Glicosilases/metabolismo , Reparo do DNA , Peroxidação de Lipídeos , Envelhecimento , Animais , Carcinogênese , Adutos de DNA/química , Recombinação Homóloga , Humanos , Mutagênese , Oxirredução
7.
DNA Repair (Amst) ; 30: 1-10, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25797601

RESUMO

AlkB proteins are evolutionary conserved Fe(II)/2-oxoglutarate-dependent dioxygenases, which remove alkyl and highly promutagenic etheno(ɛ)-DNA adducts, but their substrate specificity has not been fully determined. We developed a novel assay for the repair of ɛ-adducts by AlkB enzymes using oligodeoxynucleotides with a single lesion and specific DNA glycosylases and AP-endonuclease for identification of the repair products. We compared the repair of three ɛ-adducts, 1,N(6)-ethenoadenine (ɛA), 3,N(4)-ethenocytosine (ɛC) and 1,N(2)-ethenoguanine (1,N(2)-ɛG) by nine bacterial and two human AlkBs, representing four different structural groups defined on the basis of conserved amino acids in the nucleotide recognition lid, engaged in the enzyme binding to the substrate. Two bacterial AlkB proteins, MT-2B (from Mycobacterium tuberculosis) and SC-2B (Streptomyces coelicolor) did not repair these lesions in either double-stranded (ds) or single-stranded (ss) DNA. Three proteins, RE-2A (Rhizobium etli), SA-2B (Streptomyces avermitilis), and XC-2B (Xanthomonas campestris) efficiently removed all three lesions from the DNA substrates. Interestingly, XC-2B and RE-2A are the first AlkB proteins shown to be specialized for ɛ-adducts, since they do not repair methylated bases. Three other proteins, EcAlkB (Escherichia coli), SA-1A, and XC-1B removed ɛA and ɛC from ds and ssDNA but were inactive toward 1,N(2)-ɛG. SC-1A repaired only ɛA with the preference for dsDNA. The human enzyme ALKBH2 repaired all three ɛ-adducts in dsDNA, while only ɛA and ɛC in ssDNA and repair was less efficient in ssDNA. ALKBH3 repaired only ɛC in ssDNA. Altogether, we have shown for the first time that some AlkB proteins, namely ALKBH2, RE-2A, SA-2B and XC-2B can repair 1,N(2)-ɛG and that ALKBH3 removes only ɛC from ssDNA. Our results also suggest that the nucleotide recognition lid is not the sole determinant of the substrate specificity of AlkB proteins.


Assuntos
Bactérias/enzimologia , Proteínas de Bactérias/metabolismo , Adutos de DNA/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Reparo do DNA , Dioxigenases/metabolismo , Adenina/análogos & derivados , Adenina/metabolismo , Homólogo AlkB 2 da Dioxigenase Dependente de alfa-Cetoglutarato , Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato , Bactérias/genética , Citosina/análogos & derivados , Citosina/metabolismo , DNA/metabolismo , DNA Glicosilases/metabolismo , DNA de Cadeia Simples/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Guanina/análogos & derivados , Guanina/metabolismo , Humanos , Oxigenases de Função Mista/metabolismo , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Rhizobium etli/enzimologia , Rhizobium etli/genética , Streptomyces/enzimologia , Streptomyces/genética , Especificidade por Substrato , Xanthomonas campestris/enzimologia , Xanthomonas campestris/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...