Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Cereb Blood Flow Metab ; 44(3): 407-418, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37824728

RESUMO

The human brain undergoes metabolic adaptations in obesity, but the underlying mechanisms have remained largely unknown. We compared concentrations of often reported brain metabolites measured with magnetic resonance spectroscopy (1H-MRS, 3 T MRI) in the occipital lobe in subjects with obesity and lean controls under different metabolic conditions (fasting, insulin clamp, following weight loss). Brain glucose uptake (BGU) quantified with 18F-fluorodeoxyglucose positron emission tomography (18F-FDG-PET)) was also performed in a subset of subjects during clamp. In dataset A, 48 participants were studied during fasting with brain 1H-MRS, while in dataset B 21 participants underwent paired brain 1H-MRS acquisitions under fasting and clamp conditions. In dataset C 16 subjects underwent brain 18F-FDG-PET and 1H-MRS during clamp. In the fasting state, total N-acetylaspartate was lower in subjects with obesity, while brain myo-inositol increased in response to hyperinsulinemia similarly in both lean participants and subjects with obesity. During clamp, BGU correlated positively with brain glutamine/glutamate, total choline, and total creatine levels. Following weight loss, brain creatine levels were increased, whereas increases in other metabolites remained not significant. To conclude, insulin signaling and glucose metabolism are significantly coupled with several of the changes in brain metabolites that occur in obesity.


Assuntos
Obesidade Mórbida , Humanos , Obesidade Mórbida/metabolismo , Insulina , Fluordesoxiglucose F18/metabolismo , Creatina/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Obesidade/diagnóstico por imagem , Obesidade/metabolismo , Redução de Peso/fisiologia , Neuroimagem , Glucose/metabolismo , Colina/metabolismo
2.
Diabetes Obes Metab ; 26(1): 251-261, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37818602

RESUMO

AIM: High body weight is a protective factor against osteoporosis, but obesity also suppresses bone metabolism and whole-body insulin sensitivity. However, the impact of body weight and regular training on bone marrow (BM) glucose metabolism is unclear. We studied the effects of regular exercise training on bone and BM metabolism in monozygotic twin pairs discordant for body weight. METHODS: We recruited 12 monozygotic twin pairs (mean ± SD age 40.4 ± 4.5 years; body mass index 32.9 ± 7.6, mean difference between co-twins 7.6 kg/m2 ; eight female pairs). Ten pairs completed the 6-month long training intervention. We measured lumbar vertebral and femoral BM insulin-stimulated glucose uptake (GU) using 18 F-FDG positron emission tomography, lumbar spine bone mineral density and bone turnover markers. RESULTS: At baseline, heavier co-twins had higher lumbar vertebral BM GU (p < .001) and lower bone turnover markers (all p < .01) compared with leaner co-twins but there was no significant difference in femoral BM GU, or bone mineral density. Training improved whole-body insulin sensitivity, aerobic capacity (both p < .05) and femoral BM GU (p = .008). The training response in lumbar vertebral BM GU was different between the groups (time × group, p = .02), as GU tended to decrease in heavier co-twins (p = .06) while there was no change in leaner co-twins. CONCLUSIONS: In this study, regular exercise training increases femoral BM GU regardless of weight and genetics. Interestingly, lumbar vertebral BM GU is higher in participants with higher body weight, and training counteracts this effect in heavier co-twins even without reduction in weight. These data suggest that BM metabolism is altered by physical activity.


Assuntos
Medula Óssea , Resistência à Insulina , Humanos , Feminino , Adulto , Obesidade , Exercício Físico , Sobrepeso , Densidade Óssea
3.
Diabetes Res Clin Pract ; 202: 110780, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37331522

RESUMO

AIMS: To compare body composition, visceral adiposity, adipocytokines, and low-grade inflammation markers in prepubertal offspring of mothers who were treated with metformin or insulin for gestational diabetes mellitus (GDM). METHODS: 172 offspring of 311 mothers randomized to receive metformin (n = 82) or insulin (n = 90) for GDMwere studied at 9 years of age (follow-up rate 55%). Measurements included anthropometrics, adipocytokines, markers of the low-grade inflammation, abdominal magnetic resonance imaging (MRI), magnetic liver spectrometry (MRS), and whole body dual-energy X-ray absorptiometry (DXA). RESULTS: Serum markers of low-grade inflammation, visceral adipose tissue volume, total fat percentage, and liver fat percentage were similar between the study groups. Serum adiponectin concentration was higher in children in the metformin group compared to insulin group (median 10.37 vs 9.50 µg/ml, p = 0.016). This difference between groups was observed in boys only (median 12.13 vs 7.50 µg/ml, p < 0.001). Leptin/adiponectin-ratio was lower in boys in the metformin group than in the insulin group (median 0.30 vs 0.75; p = 0.016). CONCLUSIONS: Maternal metformin treatment for GDM had no effects on adiposity, body composition, liver fat, or inflammation markers in prepubertal offspring compared to maternal insulin treatment but was associated with higher adiponectin concentration and lower leptin/adiponectin-ratio in boys.


Assuntos
Diabetes Gestacional , Metformina , Gravidez , Masculino , Criança , Feminino , Humanos , Diabetes Gestacional/tratamento farmacológico , Insulina/uso terapêutico , Metformina/uso terapêutico , Leptina , Adiposidade , Adipocinas , Adiponectina , Obesidade , Insulina Regular Humana , Inflamação
4.
Neuroradiology ; 65(2): 349-360, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36251060

RESUMO

PURPOSE: We compared the predictive accuracy of early-phase brain diffusion tensor imaging (DTI), proton magnetic resonance spectroscopy (1H-MRS), and serum neuron-specific enolase (NSE) against the motor score and epileptic seizures (ES) for poor neurological outcome after out-of-hospital cardiac arrest (OHCA). METHODS: The predictive accuracy of DTI, 1H-MRS, and NSE along with motor score at 72 h and ES for the poor neurological outcome (modified Rankin Scale, mRS, 3 - 6) in 92 comatose OHCA patients at 6 months was assessed by area under the receiver operating characteristic curve (AUROC). Combined models of the variables were included as exploratory. RESULTS: The predictive accuracy of fractional anisotropy (FA) of DTI (AUROC 0.73, 95% CI 0.62-0.84), total N-acetyl aspartate/total creatine (tNAA/tCr) of 1H-MRS (0.78 (0.68 - 0.88)), or NSE at 72 h (0.85 (0.76 - 0.93)) was not significantly better than motor score at 72 h (0.88 (95% CI 0.80-0.96)). The addition of FA and tNAA/tCr to a combination of NSE, motor score, and ES provided a small but statistically significant improvement in predictive accuracy (AUROC 0.92 (0.85-0.98) vs 0.98 (0.96-1.00), p = 0.037). CONCLUSION: None of the variables (FA, tNAA/tCr, ES, NSE at 72 h, and motor score at 72 h) differed significantly in predicting poor outcomes in this patient group. Early-phase quantitative neuroimaging provided a statistically significant improvement for the predictive value when combined with ES and motor score with or without NSE. However, in clinical practice, the additional value is small, and considering the costs and challenges of imaging in this patient group, early-phase DTI/MRS cannot be recommended for routine use. TRIAL REGISTRATION: ClinicalTrials.gov NCT00879892, April 13, 2009.


Assuntos
Coma , Parada Cardíaca Extra-Hospitalar , Humanos , Biomarcadores , Coma/diagnóstico por imagem , Imagem de Tensor de Difusão , Parada Cardíaca Extra-Hospitalar/diagnóstico por imagem , Parada Cardíaca Extra-Hospitalar/terapia , Parada Cardíaca Extra-Hospitalar/patologia , Fosfopiruvato Hidratase , Prognóstico , Espectroscopia de Prótons por Ressonância Magnética , Convulsões , Sobreviventes
5.
Metabolites ; 12(7)2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35888741

RESUMO

Renal sinus fat is a fat depot at the renal hilum. Because of its location around the renal artery, vein, and lymphatic vessels, an expanded renal sinus fat mass may have hemodynamic and renal implications. We studied whether renal sinus fat area (RSF) associates with hypertension and whether following bariatric surgery a decrease in RSF associates with improvement of hypertension. A total of 74 severely obese and 46 lean controls were studied with whole-body magnetic resonance imaging (MRI). A total of 42 obese subjects were re-studied six months after bariatric surgery. RSF was assessed by two independent researchers using sliceOmatic. Glomerular filtration rate (eGFR) was estimated according to the CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration). Patients with obesity accumulated more RSF compared to lean controls (2.3 [1.7-3.1] vs. 1.8 [1.4-2.5] cm2, p = 0.03). Patients with hypertension (N = 36) had a larger RSF depot compared to normotensive subjects (2.6 [2.0-3.3] vs. 2.0 [1.4-2.5] cm2, p = 0.0007) also after accounting for body mass index (BMI). In the pooled data, RSF was negatively associated with eGFR (r = -0.20, p = 0.03), whereas there was no association with systolic or diastolic blood pressure. Following bariatric surgery, RSF was reduced (1.6 [1.3-2.3] vs. 2.3 [1.7-3.1] cm2, p = 0.03) along with other markers of adiposity. A total of 9/27 of patients achieved remission from hypertension. The remission was associated with a larger decrease in RSF, compared to patients who remained hypertensive (-0.68 [-0.74 to -0.44] vs. -0.28 [-0.59 to 0] cm2, p = 0.009). The accumulation of RSF seems to be involved in the pathogenesis of hypertension in obesity. Following bariatric surgery, loss of RSF was associated with remission from hypertension.

6.
Sci Rep ; 12(1): 11530, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35798828

RESUMO

N-acetylaspartate (NAA) is the second most abundant metabolite in the human brain; although it is assumed to be a proxy for a neuronal marker, its function is not fully elucidated. NAA is also detectable in plasma, but its relation to cerebral NAA levels, cognitive performance, or features of cerebral disease has not been investigated. To study whether circulating NAA tracks cerebral NAA levels, and whether circulating NAA correlates with cognitive function and features of cerebral small vessel disease (SVD). Two datasets were analyzed. In dataset 1, structural MRI was acquired in 533 subjects to assess four features of cerebral SVD. Cognitive function was evaluated with standardized test scores (N = 824). In dataset 2, brain 1H-MRS from the occipital region was acquired (N = 49). In all subjects, fasting circulating NAA was measured with mass spectrometry. Dataset 1: in univariate and adjusted for confounders models, we found no correlation between circulating NAA and the examined features of cerebral SVD. In univariate analysis, circulating NAA levels were associated inversely with the speed in information processing and the executive function score, however these associations were lost after accounting for confounders. In line with the negative findings of dataset 1, in dataset 2 there was no correlation between circulating and central NAA or total NAA levels. This study indicates that circulating NAA levels do not reflect central (occipital) NAA levels, cognitive function, or cerebral small vessel disease in man.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Cognição , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Humanos
7.
Eur J Appl Physiol ; 122(1): 81-90, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34564756

RESUMO

PURPOSE: While brown adipose tissue (BAT) activity is known to be associated with both muscle and adipose tissue volumes, the association between BAT and muscle composition remains unclear, especially in adults. Therefore, the present study aimed to examine the association between BAT parameters (glucose uptake and fat-fraction) and muscle volumes and intramuscular adipose tissue contents among healthy young and middle-aged men. METHODS: BAT glucose uptake was determined using positron emission tomography with [18F]-2-deoxy-2-fluoro-D-glucose (18F-FDG) during cold exposure in 19 young and middle-aged men (36.3 ± 10.7 years). The fat-fraction of BAT was determined from volumes of interest set in cervical and supraclavicular adipose tissue depots using signal fat-fraction maps via magnetic resonance imaging (MRI). Muscle volumes and intramuscular adipose tissue contents of m. tibialis anterior and m. multifidus lumborum were measured using MRI. RESULTS: The fat-fraction of BAT was significantly associated with intramuscular adipose tissue content in m. tibialis anterior (n = 13, rs = 0.691, P = 0.009). A similar trend was also observed in m. multifidus lumborum (n = 19, rs = 0.454, P = 0.051). However, BAT glucose uptake was not associated with intramuscular adipose tissue contents in both muscles, nor were muscle volumes associated with the BAT glucose uptake and fat-fraction. CONCLUSION: The fat-fraction of BAT increases with skeletal muscle adiposity, especially in the lower leg, among healthy young and middle-aged men.


Assuntos
Tecido Adiposo Marrom/metabolismo , Adiposidade , Músculo Esquelético/metabolismo , Tecido Adiposo Marrom/diagnóstico por imagem , Adulto , Fluordesoxiglucose F18 , Glucose/metabolismo , Voluntários Saudáveis , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos
8.
J Nucl Cardiol ; 29(4): 1964-1972, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-33948894

RESUMO

In Myocardial Perfusion Imaging (MPI) with Positron Emission Tomography/Computed Tomography (PET/CT) systems, accurate quantification is essential. We assessed flow quantification accuracy over various injected activities using a flow phantom. METHODS: The study was performed on the digital 4-ring Discovery MI (DMI-20) and analog Discovery 690 (D690) PET/CT systems, using 325-1257 MBq of [15O]H2O. PET performance and flow quantification accuracy were assessed in terms of count-rates, dead-time factors (DTF), scatter fractions (SF), time-activity curves (TACs), areas-under-the-curves (AUCs) and flow values. RESULTS: On DMI-20, prompts of 12.8 Mcps, DTF of 2.06 and SF of 46.1% were measured with 1257 MBq of activity. On the D690, prompts of 6.85 Mcps, DTF of 1.57 and SF of 32.5% were measured with 1230 MBq of activity. AUC values were linear over all activities. Mean wash-in flow error was - 9% for both systems whereas wash-out flow error was - 5% and - 6% for DMI-20 and D690. With the highest activity, wash-out flow error was - 12% and - 7% for the DMI-20 and D690. CONCLUSION: DMI-20 and D690 preserved accurate flow quantification over all injected activities, with maximum error of - 12%. In the future, flow quantification accuracy over the activities and count-rates evaluated in this study should be assessed.


Assuntos
Imagem de Perfusão do Miocárdio , Humanos , Imagem de Perfusão do Miocárdio/métodos , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons/métodos
10.
BMC Sports Sci Med Rehabil ; 13(1): 16, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627179

RESUMO

BACKGROUND: Obesity and physical inactivity are major global public health concerns, both of which increase the risk of insulin resistance and type 2 diabetes. Regulation of glucose homeostasis involves cross-talk between the central nervous system, peripheral tissues, and gut microbiota, and is affected by genetics. Systemic cross-talk between brain, gut, and peripheral tissues in glucose homeostasis: effects of exercise training (CROSSYS) aims to gain new systems-level understanding of the central metabolism in human body, and how exercise training affects this cross-talk. METHODS: CROSSYS is an exercise training intervention, in which participants are monozygotic twins from pairs discordant for body mass index (BMI) and within a pair at least the other is overweight. Twins are recruited from three population-based longitudinal Finnish twin studies, including twins born in 1983-1987, 1975-1979, and 1945-1958. The participants undergo 6-month-long exercise intervention period, exercising four times a week (including endurance, strength, and high-intensity training). Before and after the exercise intervention, comprehensive measurements are performed in Turku PET Centre, Turku, Finland. The measurements include: two positron emission tomography studies (insulin-stimulated whole-body and tissue-specific glucose uptake and neuroinflammation), magnetic resonance imaging (brain morphology and function, quantification of body fat masses and organ volumes), magnetic resonance spectroscopy (quantification of fat within heart, pancreas, liver and tibialis anterior muscle), echocardiography, skeletal muscle and adipose tissue biopsies, a neuropsychological test battery as well as biosamples from blood, urine and stool. The participants also perform a maximal exercise capacity test and tests of muscular strength. DISCUSSION: This study addresses the major public health problems related to modern lifestyle, obesity, and physical inactivity. An eminent strength of this project is the possibility to study monozygotic twin pairs that share the genome at the sequence level but are discordant for BMI that is a risk factor for metabolic impairments such as insulin resistance. Thus, this exercise training intervention elucidates the effects of obesity on metabolism and whether regular exercise training is able to reverse obesity-related impairments in metabolism in the absence of the confounding effects of genetic factors. TRIAL REGISTRATION: ClinicalTrials.gov , NCT03730610 . Prospectively registered 5 November 2018.

11.
Temperature (Austin) ; 7(4): 363-388, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33251282

RESUMO

Noninvasive imaging methods of internal body temperature are in high demand in both clinical medicine and physiological research. Thermography and thermometry can be used to assess tissue temperature during thermal therapies: ablative and hyperthermia treatments to ensure adequate temperature rise in target tissues but also to avoid collateral damage by heating healthy tissues. In research use, measurement of internal body temperature enables us the production of thermal maps on muscles, internal organs, and other tissues of interest. The most used methods for noninvasive imaging of internal body temperature are based on different parameters acquired with magnetic resonance imaging, ultrasound, computed tomography, microwave radiometry, photoacoustic imaging, and near-infrared spectroscopy. In the current review, we examine the aforementioned imaging methods, their use in estimating internal body temperature in vivo with their advantages and disadvantages, and the physical phenomena the thermography or thermometry modalities are based on.

12.
J Neuroinflammation ; 16(1): 252, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31796042

RESUMO

BACKGROUND: Folate receptor-ß (FR-ß) is a cell surface receptor that is significantly upregulated on activated macrophages during inflammation and provides a potential target for folate-based therapeutic and diagnostic agents. FR-ß expression in central nervous system inflammation remains relatively unexplored. Therefore, we used focally induced acute and chronic phases of experimental autoimmune encephalomyelitis (EAE) to study patterns of FR-ß expression and evaluated its potential as an in vivo imaging target. METHODS: Focal EAE was induced in rats using heat-killed Bacillus Calmette-Guérin followed by activation with complete Freund's adjuvant supplemented with Mycobacterium tuberculosis. The rats were assessed with magnetic resonance imaging and positron emission tomography/computed tomography (PET/CT) at acute (14 days) and chronic (90 days) phases of inflammation. The animals were finally sacrificed for ex vivo autoradiography of their brains. PET studies were performed using FR-ß-targeting aluminum [18F]fluoride-labeled 1,4,7-triazacyclononane-1,4,7-triacetic acid conjugated folate ([18F]AlF-NOTA-folate, 18F-FOL) and 18 kDa translocator protein (TSPO)-targeting N-acetyl-N-(2-[11C]methoxybenzyl)-2-phenoxy-5-pyridinamine (11C-PBR28). Post-mortem immunohistochemistry was performed using anti-FR-ß, anti-cluster of differentiation 68 (anti-CD68), anti-inducible nitric oxide synthase (anti-iNOS), and anti-mannose receptor C-type 1 (anti-MRC-1) antibodies. The specificity of 18F-FOL binding was verified using in vitro brain sections with folate glucosamine used as a blocking agent. RESULTS: Immunohistochemical evaluation of focal EAE lesions demonstrated anti-FR-ß positive cells at the lesion border in both acute and chronic phases of inflammation. We found that anti-FR-ß correlated with anti-CD68 and anti-MRC-1 immunohistochemistry; for MRC-1, the correlation was most prominent in the chronic phase of inflammation. Both 18F-FOL and 11C-PBR28 radiotracers bound to the EAE lesions. Autoradiography studies verified that this binding took place in areas of anti-FR-ß positivity. A blocking assay using folate glucosamine further verified the tracer's specificity. In the chronic phase of EAE, the lesion-to-background ratio of 18F-FOL was significantly higher than that of 11C-PBR28 (P = 0.016). CONCLUSION: Our EAE results imply that FR-ß may be a useful target for in vivo imaging of multiple sclerosis-related immunopathology. FR-ß-targeted PET imaging with 18F-FOL may facilitate the monitoring of lesion development and complement the information obtained from TSPO imaging by bringing more specificity to the PET imaging armamentarium for neuroinflammation.


Assuntos
Encefalomielite Autoimune Experimental/diagnóstico por imagem , Encefalomielite Autoimune Experimental/metabolismo , Receptor 2 de Folato/metabolismo , Animais , Encefalomielite Autoimune Experimental/induzido quimicamente , Adjuvante de Freund/toxicidade , Masculino , Mycobacterium tuberculosis/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Ligação Proteica/fisiologia , Distribuição Aleatória , Ratos , Ratos Endogâmicos Lew
13.
J Neuroinflammation ; 15(1): 128, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29716612

RESUMO

BACKGROUND: Vascular adhesion protein-1 (VAP-1) is an inflammation-inducible endothelial cell molecule and primary amine oxidase that mediates leukocyte entry to sites of inflammation. However, there is limited knowledge of the inflammation-related expression of VAP-1 in the central nervous system (CNS). Therefore, we investigated the expression of VAP-1 within the CNS vasculature in two focal rat models of experimental autoimmune encephalomyelitis (EAE) mimicking multiple sclerosis (MS). METHODS: EAE was induced either with Bacillus Calmette-Guérin, resulting in a delayed-type hypersensitivity-like pathogenesis (fDTH-EAE), or with myelin oligodendrocyte glycoprotein (fMOG-EAE). A subgroup of fMOG-EAE rats were treated daily with a selective VAP-1 inhibitor (LJP1586; 5 mg/kg). On 3 and 14 days after lesion activation, rat brains were assessed using magnetic resonance imaging (MRI), and ex vivo autoradiography was conducted to evaluate the binding of Gallium-68-labelled VAP-1 ligand. Histology and immunohistochemistry (OX-42, VAP-1, intercellular adhesion protein-1 [ICAM-1], P-selectin) supported the ex vivo autoradiography. RESULTS: EAE lesions showed MRI-detectable signal changes and binding of the VAP-1-targeting radiotracer in both rat models. Some of the VAP-1 positive vessels showed morphological features typical for high endothelial-like venules at sites of inflammation. Inhibition of VAP-1 activity with small molecule inhibitor, LJP1586, decreased lymphocyte density in the acute inflammatory phase of fMOG-EAE lesions (day 3, P = 0.026 vs. untreated), but not in the remission phase (day 14, P = 0.70 vs. untreated), and had no effect on the amount of OX-42-positive cells in either phase. LJP1586 treatment reduced VAP-1 and ICAM-1 expression in the acute inflammatory phase, whereas P-selectin remained not detectable at all studied stages of the disease. CONCLUSIONS: Our results revealed that VAP-1 is expressed and functionally active in vasculature within the induced focal EAE lesions during the acute phase of inflammation and remains expressed after the acute inflammation has subsided. The study indicates that VAP-1 is actively involved in the development of inflammatory CNS lesions. During this process, the endothelial cell lesion-related vasculature seem to undergo a structural transformation from regular flat-walled endothelium to HEV-like endothelium.


Assuntos
Amina Oxidase (contendo Cobre)/biossíntese , Moléculas de Adesão Celular/biossíntese , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Animais , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Inflamação/metabolismo , Inflamação/patologia , Masculino , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Ratos , Ratos Endogâmicos Lew
14.
Diabetes ; 67(7): 1226-1236, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29650773

RESUMO

Activating brown adipose tissue (BAT) could provide a potential approach for the treatment of obesity and metabolic disease in humans. Obesity is associated with upregulation of the endocannabinoid system, and blocking the cannabinoid type 1 receptor (CB1R) has been shown to cause weight loss and to decrease cardiometabolic risk factors. These effects may be mediated partly via increased BAT metabolism, since there is evidence that CB1R antagonism activates BAT in rodents. To investigate the significance of CB1R in BAT function, we quantified the density of CB1R in human and rodent BAT using the positron emission tomography radioligand [18F]FMPEP-d2 and measured BAT activation in parallel with the glucose analog [18F]fluorodeoxyglucose. Activation by cold exposure markedly increased CB1R density and glucose uptake in the BAT of lean men. Similarly, ß3-receptor agonism increased CB1R density in the BAT of rats. In contrast, overweight men with reduced BAT activity exhibited decreased CB1R in BAT, reflecting impaired endocannabinoid regulation. Image-guided biopsies confirmed CB1R mRNA expression in human BAT. Furthermore, CB1R blockade increased glucose uptake and lipolysis of brown adipocytes. Our results highlight that CB1Rs are significant for human BAT activity, and the CB1Rs provide a novel therapeutic target for BAT activation in humans.


Assuntos
Tecido Adiposo Marrom/metabolismo , Resposta ao Choque Frio/genética , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Tecido Adiposo Marrom/diagnóstico por imagem , Tecido Adiposo Marrom/patologia , Adulto , Animais , Células Cultivadas , Fluordesoxiglucose F18 , Humanos , Masculino , Pessoa de Meia-Idade , Sobrepeso/diagnóstico por imagem , Sobrepeso/genética , Sobrepeso/metabolismo , Tomografia por Emissão de Pósitrons , Pirrolidinonas , Ratos , Ratos Sprague-Dawley , Termogênese/genética , Regulação para Cima/genética , Adulto Jovem
15.
Metabolism ; 70: 23-30, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28403942

RESUMO

OBJECTIVE: Brown adipose tissue (BAT) is compositionally distinct from white adipose tissue (WAT) in terms of triglyceride and water content. In adult humans, the most significant BAT depot is localized in the supraclavicular area. Our aim is to differentiate brown adipose tissue from white adipose tissue using fat T2* relaxation time mapping and signal-fat-fraction (SFF) analysis based on a commercially available modified 2-point-Dixon (mDixon) water-fat separation method. We hypothesize that magnetic resonance (MR) imaging can reliably measure BAT regardless of the cold-induced metabolic activation, with BAT having a significantly higher water and iron content compared to WAT. MATERIAL AND METHODS: The supraclavicular area of 13 volunteers was studied on 3T PET-MRI scanner using T2* relaxation time and SFF mapping both during cold exposure and at ambient temperature; and 18F-FDG PET during cold exposure. Volumes of interest (VOIs) were defined semiautomatically in the supraclavicular fat depot, subcutaneous WAT and muscle. RESULTS: The supraclavicular fat depot (assumed to contain BAT) had a significantly lower SFF and fat T2* relaxation time compared to subcutaneous WAT. Cold exposure did not significantly affect MR-based measurements. SFF and T2* values measured during cold exposure and at ambient temperature correlated inversely with the glucose uptake measured by 18F-FDG PET. CONCLUSIONS: Human BAT can be reliably and safely assessed using MRI without cold activation and PET-related radiation exposure.


Assuntos
Tecido Adiposo Marrom/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Tecido Adiposo Branco/diagnóstico por imagem , Adulto , Temperatura Baixa , Fluordesoxiglucose F18 , Humanos , Ferro/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Água
16.
J Clin Endocrinol Metab ; 102(4): 1200-1207, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28323929

RESUMO

Background and Aim: The metabolic activity of human brown adipose tissue (BAT) has been previously examined using positron emission tomography (PET). The aim of this study was to use proton magnetic resonance spectroscopy (1H MRS) to investigate whether the temperature and the fat fraction (FF) of BAT and white adipose tissue (WAT) are associated with BAT metabolic activity determined by deoxy-2-18F-fluoro-d-glucose (18F-FDG)-PET. Materials and Methods: Ten healthy subjects (four women, six men; 25 to 45 years of age) were studied using PET-magnetic resonance imaging during acute cold exposure and at ambient room temperature. BAT and subcutaneous WAT 1H MRS were measured. The tissue temperature and the FF were derived from the spectra. Tissue metabolic activity was studied through glucose uptake using dynamic FDG PET scanning during cold exposure. A 2-hour hyperinsulinemic euglycemic clamp was performed on eight subjects. Results: The metabolic activity of BAT associated directly with the heat production capacity and inversely with the FF of the tissue. In addition, the lipid-burning capacity of BAT associated with whole-body insulin sensitivity. During cold exposure, the FF of BAT was lower than at room temperature, and cold-induced FF of BAT associated inversely with high-density lipoprotein and directly with low-density lipoprotein cholesterol. Conclusion: Both 1H MRS-derived temperature and FF are promising methods to study BAT activity noninvasively. The association between the lipid-burning capacity of BAT and whole-body insulin sensitivity emphasizes the role of BAT in glucose handling. Furthermore, the relation of FF to high-density lipoprotein and low-density lipoprotein cholesterol suggests that BAT has a role in lipid clearance, thus protecting tissues from excess lipid load.


Assuntos
Tecido Adiposo Marrom/metabolismo , Adiposidade/fisiologia , Regulação da Temperatura Corporal/fisiologia , Espectroscopia de Ressonância Magnética/métodos , Termometria/métodos , Tecido Adiposo Marrom/diagnóstico por imagem , Adulto , Temperatura Baixa , Estudos de Viabilidade , Feminino , Fluordesoxiglucose F18 , Técnica Clamp de Glucose , Voluntários Saudáveis , Humanos , Resistência à Insulina , Lipoproteínas HDL/metabolismo , Lipoproteínas LDL/metabolismo , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Gordura Subcutânea/metabolismo
17.
PLoS One ; 11(9): e0163723, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27669153

RESUMO

Bone marrow insulin sensitivity may be an important factor for bone health in addition to bone mineral density especially in insulin resistant conditions. First we aimed to study if prenatal maternal obesity plays a role in determining bone marrow insulin sensitivity in elderly female offspring. Secondly we studied if a four-month individualized resistance training intervention increases bone marrow insulin sensitivity in elderly female offspring and whether this possible positive outcome is regulated by the offspring's mother's obesity status. 37 frail elderly females (mean age 71.9 ± 3.1 years) of which 20 were offspring of lean/normal-weight mothers (OLM, maternal BMI ≤ 26.3 kg/m2) and 17 were offspring of obese/overweight mothers (OOM, maternal BMI ≥ 28.1 kg/m2) were studied before and after a four-month individualized resistance training intervention. Nine age- and sex-matched non-frail controls (maternal BMI ≤ 26.3 kg/m2) were studied at baseline. Femoral bone marrow (FBM) and vertebral bone marrow (VBM) insulin sensitivity were measured using [18F]fluoro-2-deoxy-D-glucose positron emission tomography with computer tomography under hyperinsulinemic euglycemic clamp. We found that bone marrow insulin sensitivity was not related to maternal obesity status but FBM insulin sensitivity correlated with whole body insulin sensitivity (R = 0.487, p = 0.001). A four-month resistance training intervention increased FBM insulin sensitivity by 47% (p = 0.006) only in OOM, while VBM insulin sensitivity remained unchanged regardless of the maternal obesity status. In conclusion, FBM and VBM glucose metabolism reacts differently to a four-month resistance training intervention in elderly women according to their maternal obesity status. TRIAL REGISTRATION: ClinicalTrials.gov NCT01931540.


Assuntos
Medula Óssea/metabolismo , Fêmur , Resistência à Insulina , Obesidade/fisiopatologia , Sobrepeso/fisiopatologia , Treinamento Resistido , Idoso , Estudos de Casos e Controles , Feminino , Fêmur/diagnóstico por imagem , Idoso Fragilizado , Glucose/metabolismo , Humanos , Tomografia por Emissão de Pósitrons , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...