Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Scand J Immunol ; 88(1): e12671, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29706017

RESUMO

Factor H is an important regulator of complement activation in plasma and on cell surfaces in both humans and mice. If FH function is compromised, inappropriate complement activation on self-surfaces can have disastrous effects as seen in the kidney diseases atypical haemolytic uremic syndrome (aHUS) and C3 glomerulopathy. As FH constructs have been proposed to be used in treatment for these diseases, we studied the distribution of exogenous FH fragments in mice. Full-length mFH, mFH1-5 and mFH18-20 fragments were radiolabelled, and their distribution was examined in WT, FH-/- and FH-/- C3-/- mice in vivo. Whole body scintigraphy revealed accumulation of radioactivity in the abdominal part of the mice, but also to the thyroid gland and urinary bladder. At organ level in WT mice, some full-length FH accumulated in internal organs, but most of it remained in the circulation. Both of the mFH fragments accumulated in the kidneys and were excreted in urine. For mFH1-5, urinary secretion is the likely cause for the accumulation. Concentration of mFH18-20 to kidneys was slower, and at tissue level, mFH18-20 was localized at the proximal tubuli in WT and FH-/- C3-/- mice. No C3-independent binding to glomeruli was detected. In conclusion, these results show that glomerular glycosaminoglycans and sialic acids alone do not collect FH in kidneys. Deposition of C3 fragments is also needed, which implies that in aHUS, the problem is in simultaneous recognition of C3 fragments and glycosaminoglycans or sialic acids by FH, not just the inability of FH to recognize glomerular endothelium as such.


Assuntos
Fator H do Complemento/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fragmentos de Peptídeos/metabolismo , Distribuição Tecidual
2.
Am J Transplant ; 11(9): 1885-95, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21812916

RESUMO

Atypical hemolytic uremic syndrome (aHUS) is a thrombotic microangiopathy often caused by mutations in complement factor H (CFH), the main regulator of alternative complement pathway. Because CFH is produced mainly by the liver, combined liver-kidney transplantation is a reasonable option in treatment of patients with severe aHUS. We studied complement activation by monitoring activation markers during liver transplantation in two aHUS patients treated extensively with plasma exchange and nine other liver transplantation patients. After the reperfusion, a clear increase in all the activation markers except C4d was observed indicating that the activation occurs mainly through the alternative pathway. Concentration of SC5b-9 was higher in the hepatic than the portal vein indicating complement activation in the graft. Preoperatively and early during the operation, the aHUS patients showed highest C3d concentrations but otherwise their activation markers were similar to the other patients. In the other patients, correlation was found between perioperative SC5b-9 concentration and postoperative alanine aminotransferase and histological changes. This study explains why supply of normal CFH by extensive plasma exchange is beneficial before combined liver-kidney transplantation of aHUS patients. Also the results suggest that perioperative inhibition of the terminal complement cascade might be beneficial if enhanced complement activation is expected.


Assuntos
Ativação do Complemento , Síndrome Hemolítico-Urêmica/cirurgia , Transplante de Fígado , Adolescente , Adulto , Humanos , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA