Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(12)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37420593

RESUMO

In dense IoT deployments of wireless sensor networks (WSNs), sensor placement, coverage, connectivity, and energy constraints determine the overall network lifetime. In large-size WSNs, it is difficult to maintain a trade-off among these conflicting constraints and, thus, scaling is difficult. In the related research literature, various solutions are proposed that attempt to address near-optimal behavior in polynomial time, the majority of which relies on heuristics. In this paper, we formulate a topology control and lifetime extension problem regarding sensor placement, under coverage and energy constraints, and solve it by applying and testing several neural network configurations. To do so, the neural network dynamically proposes and handles sensor placement coordinates in a 2D plane, having the ultimate goal to extend network lifetime. Simulation results show that our proposed algorithm improves network lifetime, while maintaining communication and energy constraints, for medium- and large-scale deployments.


Assuntos
Algoritmos , Redes Neurais de Computação , Simulação por Computador , Comunicação , Heurística
2.
Sensors (Basel) ; 23(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36904638

RESUMO

Channel coding is a fundamental procedure in wireless telecommunication systems and has a strong impact on the data transmission quality. This effect becomes more important when the transmission must be characterised by low latency and low bit error rate, as in the case of vehicle-to-everything (V2X) services. Thus, V2X services must use powerful and efficient coding schemes. In this paper, we thoroughly examine the performance of the most important channel coding schemes in V2X services. More specifically, the impact of use of 4th-Generation Long-Term Evolution (4G-LTE) turbo codes, 5th-Generation New Radio (5G-NR) polar codes and low-density parity-check codes (LDPC) in V2X communication systems is researched. For this purpose, we employ stochastic propagation models that simulate the cases of line of sight (LOS), non-line of sight (NLOS) and line of sight with vehicle blockage (NLOSv) communication. Different communication scenarios are investigated in urban and highway environments using the 3rd-Generation Partnership Project (3GPP) parameters for the stochastic models. Based on these propagation models, we investigate the performance of the communication channels in terms of bit error rate (BER) and frame error rate (FER) performance for different levels of signal to noise ratio (SNR) for all the aforementioned coding schemes and three small V2X-compatible data frames. Our analysis shows that turbo-based coding schemes have superior BER and FER performance than 5G coding schemes for the vast majority of the considered simulation scenarios. This fact, combined with the low-complexity requirements of turbo schemes for small data frames, makes them more suitable for small-frame 5G V2X services.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA