Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Mutat ; 34(2): 317-29, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23169578

RESUMO

Schnyder corneal dystrophy (SCD) is an autosomal dominant disease characterized by germline variants in UBIAD1 introducing missense alterations leading to deposition of cholesterol in the cornea, progressive opacification, and loss of visual acuity. UBIAD1 was recently shown to synthesize menaquinone-4 (MK-4, vitamin K(2) ), but causal mechanisms of SCD are unknown. We report a novel c.864G>A UBIAD1 mutation altering glycine 177 to glutamic acid (p.G177E) in six SCD families, including four families from Finland who share a likely founder mutation. We observed reduced MK-4 synthesis by UBIAD1 altered by SCD mutations p.N102S, p.G177R/E, and p.D112N, and molecular models showed p.G177-mutant UBIAD1 disrupted transmembrane helices and active site residues. We show UBIAD1 interacts with HMGCR and SOAT1, enzymes catalyzing cholesterol synthesis and storage, respectively, using yeast two-hybrid screening and immunoprecipitation. Docking simulations indicate cholesterol binds to UBIAD1 in the substrate-binding cleft and substrate-binding overlaps with GGPP binding, an MK-4 substrate, suggesting potential competition between these metabolites. Impaired MK-4 synthesis is a biochemical defect identified in SCD suggesting UBIAD1 links vitamin K and cholesterol metabolism through physical contact between enzymes and metabolites. Our data suggest a role for endogenous MK-4 in maintaining cornea health and visual acuity.


Assuntos
Colesterol/metabolismo , Distrofias Hereditárias da Córnea/genética , Dimetilaliltranstransferase/genética , Vitamina K 2/análogos & derivados , Idoso , Idoso de 80 Anos ou mais , Sequência de Aminoácidos , Córnea/enzimologia , Dimetilaliltranstransferase/metabolismo , Feminino , Finlândia , Variação Genética , Ácido Glutâmico/metabolismo , Glicina/metabolismo , Humanos , Hidroximetilglutaril-CoA Redutases/genética , Hidroximetilglutaril-CoA Redutases/metabolismo , Imunoprecipitação , Japão , Metabolismo dos Lipídeos , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Linhagem , Conformação Proteica , Análise de Sequência de DNA , Esterol O-Aciltransferase/genética , Esterol O-Aciltransferase/metabolismo , Turquia , Vitamina K 2/metabolismo
2.
PLoS One ; 5(5): e10760, 2010 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-20505825

RESUMO

BACKGROUND: Mutations in a novel gene, UBIAD1, were recently found to cause the autosomal dominant eye disease Schnyder corneal dystrophy (SCD). SCD is characterized by an abnormal deposition of cholesterol and phospholipids in the cornea resulting in progressive corneal opacification and visual loss. We characterized lesions in the UBIAD1 gene in new SCD families and examined protein homology, localization, and structure. METHODOLOGY/PRINCIPAL FINDINGS: We characterized five novel mutations in the UBIAD1 gene in ten SCD families, including a first SCD family of Native American ethnicity. Examination of protein homology revealed that SCD altered amino acids which were highly conserved across species. Cell lines were established from patients including keratocytes obtained after corneal transplant surgery and lymphoblastoid cell lines from Epstein-Barr virus immortalized peripheral blood mononuclear cells. These were used to determine the subcellular localization of mutant and wild type protein, and to examine cholesterol metabolite ratios. Immunohistochemistry using antibodies specific for UBIAD1 protein in keratocytes revealed that both wild type and N102S protein were localized sub-cellularly to mitochondria. Analysis of cholesterol metabolites in patient cell line extracts showed no significant alteration in the presence of mutant protein indicating a potentially novel function of the UBIAD1 protein in cholesterol biochemistry. Molecular modeling was used to develop a model of human UBIAD1 protein in a membrane and revealed potentially critical roles for amino acids mutated in SCD. Potential primary and secondary substrate binding sites were identified and docking simulations indicated likely substrates including prenyl and phenolic molecules. CONCLUSIONS/SIGNIFICANCE: Accumulating evidence from the SCD familial mutation spectrum, protein homology across species, and molecular modeling suggest that protein function is likely down-regulated by SCD mutations. Mitochondrial UBIAD1 protein appears to have a highly conserved function that, at least in humans, is involved in cholesterol metabolism in a novel manner.


Assuntos
Distrofias Hereditárias da Córnea/enzimologia , Distrofias Hereditárias da Córnea/genética , Dimetilaliltranstransferase/genética , Mitocôndrias/enzimologia , Mitocôndrias/genética , Mutação/genética , Proteínas/genética , Sequência de Aminoácidos , Aminoácidos , Sequência de Bases , Colesterol/metabolismo , Sequência Conservada , Córnea/enzimologia , Córnea/patologia , Distrofias Hereditárias da Córnea/patologia , Análise Mutacional de DNA , Demografia , Família , Humanos , Modelos Lineares , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Transporte Proteico , Proteínas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...