Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(19)2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37834476

RESUMO

Drosophila CP190 and CP60 are transcription factors that are associated with centrosomes during mitosis. CP190 is an essential transcription factor and preferentially binds to housekeeping gene promoters and insulators through interactions with architectural proteins, including Su(Hw) and dCTCF. CP60 belongs to a family of transcription factors that contain the N-terminal MADF domain and the C-terminal BESS domain, which is characterized by the ability to homodimerize. In this study, we show that the conserved CP60 region adjacent to MADF is responsible for interacting with CP190. In contrast to the well-characterized MADF-BESS transcriptional activator Adf-1, CP60 is recruited to most chromatin sites through its interaction with CP190, and the MADF domain is likely involved in protein-protein interactions but not in DNA binding. The deletion of the Map60 gene showed that CP60 is not an essential protein, despite the strong and ubiquitous expression of CP60 at all stages of Drosophila development. Although CP60 is a stable component of the Su(Hw) insulator complex, the inactivation of CP60 does not affect the enhancer-blocking activity of the Su(Hw)-dependent gypsy insulator. Overall, our results indicate that CP60 has an important but redundant function in transcriptional regulation as a partner of the CP190 protein.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Ligação Proteica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Sci Rep ; 9(1): 5314, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30926937

RESUMO

Suppressor of Hairy-wing [Su(Hw)] is a DNA-binding architectural protein that participates in the organization of insulators and repression of promoters in Drosophila. This protein contains acidic regions at both ends and a central cluster of 12 zinc finger domains, some of which are involved in the specific recognition of the binding site. One of the well-described in vivo function of Su(Hw) is the repression of transcription of neuronal genes in oocytes. Here, we have found that the same Su(Hw) C-terminal region (aa 720-892) is required for insulation as well as for promoter repression. The best characterized partners of Su(Hw), CP190 and Mod(mdg4)-67.2, are not involved in the repression of neuronal genes. Taken together, these results suggest that an unknown protein or protein complex binds to the C-terminal region of Su(Hw) and is responsible for the direct repression activity of Su(Hw).


Assuntos
Proteínas de Drosophila/metabolismo , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica , Regiões Promotoras Genéticas , Domínios e Motivos de Interação entre Proteínas , Proteínas Repressoras/metabolismo , Animais , Sequência de Bases , Sítios de Ligação , Biologia Computacional , Proteínas de Ligação a DNA , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/química , Elementos Isolantes , Ligação Proteica , Proteínas Repressoras/química
3.
Virus Res ; 253: 68-76, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29890203

RESUMO

The protein VCP/p97 (also named CDC48 and TER94) belongs to a type II subfamily of the AAA+ATPases and controls cellular proteostasis by acting upstream of proteasomes in the ubiquitin-proteasome protein degradation pathway. The function of VCP/p97 in the baculovirus infection cycle in insect cells remains unknown. Here, we identified VCP/p97 in the fall armyworm Spodoptera frugiperda (Sf9) cells and analyzed the replication of the Autographa californica multiple nucleopolyhedrovirus, AcMNPV, in Sf9 cells in which the VCP/p97 function was inhibited. The specific allosteric inhibitor of the VCP/p97 ATPase activity, NMS-873, did not deplete VCP/p97 in infected cells but caused a dose-dependent inhibition of viral DNA synthesis and efficiently suppressed expression of viral proteins and production of budded virions. NMS-873 caused accumulation of ubiquitinated proteins in a manner similar to the inhibitor of proteasome activity, Bortezomib. This suggests the essential function of VCP/p97 in the baculovirus infection cycle might be associated, at least in part, with the ubiquitin-proteasome system.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Insetos/metabolismo , Nucleopoliedrovírus/fisiologia , Spodoptera/enzimologia , Adenosina Trifosfatases/genética , Animais , Interações Hospedeiro-Patógeno , Proteínas de Insetos/genética , Nucleopoliedrovírus/genética , Células Sf9 , Spodoptera/genética , Spodoptera/virologia , Replicação Viral
4.
PLoS One ; 13(2): e0193497, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29474480

RESUMO

Su(Hw) belongs to the class of proteins that organize chromosome architecture and boundaries/insulators between regulatory domains. This protein contains a cluster of 12 zinc finger domains most of which are responsible for binding to three different modules in the consensus site. Su(Hw) forms a complex with CP190 and Mod(mdg4)-67.2 proteins that binds to well-known Drosophila insulators. To understand how Su(Hw) performs its activities and binds to specific sites in chromatin, we have examined the previously described su(Hw)f mutation that disrupts the 10th zinc finger (ZF10) responsible for Su(Hw) binding to the upstream module. The results have shown that Su(Hw)f loses the ability to interact with CP190 in the absence of DNA. In contrast, complete deletion of ZF10 does not prevent the interaction between Su(Hw)Δ10 and CP190. Having studied insulator complex formation in different mutant backgrounds, we conclude that both association with CP190 and Mod(mdg4)-67.2 partners and proper organization of DNA binding site are essential for the efficient recruitment of the Su(Hw) complex to chromatin insulators.


Assuntos
Cromatina/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Dedos de Zinco , Animais , Sítios de Ligação , DNA/metabolismo , Proteínas Associadas aos Microtúbulos/química , Proteínas Nucleares/química , Ligação Proteica
5.
Chromosoma ; 127(1): 59-71, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28939920

RESUMO

The best-studied Drosophila insulator complex consists of two BTB-containing proteins, the Mod(mdg4)-67.2 isoform and CP190, which are recruited cooperatively to chromatin through interactions with the DNA-binding architectural protein Su(Hw). While Mod(mdg4)-67.2 interacts only with Su(Hw), CP190 interacts with many other architectural proteins. In spite of the fact that CP190 is critical for the activity of Su(Hw) insulators, interaction between these proteins has not been studied yet. Therefore, we have performed a detailed analysis of domains involved in the interaction between the Su(Hw) and CP190. The results show that the BTB domain of CP190 interacts with two adjacent regions at the N-terminus of Su(Hw). Deletion of either region in Su(Hw) only weakly affected recruiting of CP190 to the Su(Hw) sites in the presence of Mod(mdg4)-67.2. Deletion of both regions in Su(Hw) prevents its interaction with CP190. Using mutations in vivo, we found that interactions with Su(Hw) and Mod(mdg4)-67.2 are essential for recruiting of CP190 to the Su(Hw) genomic sites.


Assuntos
Domínio BTB-POZ , Proteínas de Drosophila/metabolismo , Elementos Isolantes , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Animais , Domínio BTB-POZ/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , Modelos Genéticos , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fenótipo , Ligação Proteica , Proteínas Repressoras/química , Proteínas Repressoras/genética
6.
Open Biol ; 7(10)2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29021216

RESUMO

The best-studied Drosophila insulator complex consists of two BTB-containing proteins, the Mod(mdg4)-67.2 isoform and CP190, which are recruited to the chromatin through interactions with the DNA-binding Su(Hw) protein. It was shown previously that Mod(mdg4)-67.2 is critical for the enhancer-blocking activity of the Su(Hw) insulators and it differs from more than 30 other Mod(mdg4) isoforms by the C-terminal domain required for a specific interaction with Su(Hw) only. The mechanism of the highly specific association between Mod(mdg4)-67.2 and Su(Hw) is not well understood. Therefore, we have performed a detailed analysis of domains involved in the interaction of Mod(mdg4)-67.2 with Su(Hw) and CP190. We found that the N-terminal region of Su(Hw) interacts with the glutamine-rich domain common to all the Mod(mdg4) isoforms. The unique C-terminal part of Mod(mdg4)-67.2 contains the Su(Hw)-interacting domain and the FLYWCH domain that facilitates a specific association between Mod(mdg4)-67.2 and the CP190/Su(Hw) complex. Finally, interaction between the BTB domain of Mod(mdg4)-67.2 and the M domain of CP190 has been demonstrated. By using transgenic lines expressing different protein variants, we have shown that all the newly identified interactions are to a greater or lesser extent redundant, which increases the reliability in the formation of the protein complexes.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/genética , Drosophila/metabolismo , Elementos Isolantes , Animais , Imunoprecipitação da Cromatina , Proteínas de Ligação a DNA/química , Proteínas de Drosophila/química , Loci Gênicos , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Complexos Multiproteicos/metabolismo , Fenótipo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas
7.
Chromosoma ; 126(2): 299-311, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27136940

RESUMO

Recent data suggest that insulators organize chromatin architecture in the nucleus. The best characterized Drosophila insulator, found in the gypsy retrotransposon, contains 12 binding sites for the Su(Hw) protein. Enhancer blocking, along with Su(Hw), requires BTB/POZ domain proteins, Mod(mdg4)-67.2 and CP190. Inactivation of Mod(mdg4)-67.2 leads to a direct repression of the yellow gene promoter by the gypsy insulator. Here, we have shown that such repression is regulated by the level of the EAST protein, which is an essential component of the interchromatin compartment. Deletion of the EAST C-terminal domain suppresses Su(Hw)-mediated repression. Partial inactivation of EAST by mutations in the east gene suppresses the enhancer-blocking activity of the gypsy insulator. The binding of insulator proteins to chromatin is highly sensitive to the level of EAST expression. These results suggest that EAST, one of the main components of the interchromatin compartment, can regulate the activity of chromatin insulators.


Assuntos
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Elementos Isolantes , Fosfoproteínas/metabolismo , Proteínas Repressoras/genética , Alelos , Animais , Proteínas de Ciclo Celular , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica , Masculino , Mutação , Fenótipo , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas de Ligação a RNA/genética , Proteínas Repressoras/metabolismo
8.
PLoS One ; 10(10): e0140991, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26489095

RESUMO

Recent data suggest that insulators organize chromatin architecture in the nucleus. The best studied Drosophila insulator proteins, dCTCF (a homolog of the vertebrate insulator protein CTCF) and Su(Hw), are DNA-binding zinc finger proteins. Different isoforms of the BTB-containing protein Mod(mdg4) interact with Su(Hw) and dCTCF. The CP190 protein is a cofactor for the dCTCF and Su(Hw) insulators. CP190 is required for the functional activity of insulator proteins and is involved in the aggregation of the insulator proteins into specific structures named nuclear speckles. Here, we have shown that the nuclear distribution of CP190 is dependent on the level of EAST protein, an essential component of the interchromatin compartment. EAST interacts with CP190 and Mod(mdg4)-67.2 proteins in vitro and in vivo. Over-expression of EAST in S2 cells leads to an extrusion of the CP190 from the insulator bodies containing Su(Hw), Mod(mdg4)-67.2, and dCTCF. In consistent with the role of the insulator bodies in assembly of protein complexes, EAST over-expression led to a striking decrease of the CP190 binding with the dCTCF and Su(Hw) dependent insulators and promoters. These results suggest that EAST is involved in the regulation of CP190 nuclear localization.


Assuntos
Núcleo Celular/metabolismo , Cromatina/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/genética , Drosophila/metabolismo , Elementos Isolantes/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Animais , Proteínas de Ligação a DNA/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica/fisiologia , Fatores de Transcrição/metabolismo
9.
Virology ; 421(1): 34-41, 2011 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-21982219

RESUMO

Eight members of the HSP/HSC70 family were identified in Spodoptera frugiperda Sf9 cells infected with Autographa californica multiple nucleopolyhedrovirus (AcMNPV) by 2D electrophoresis followed by mass spectrometry (MALDI/TOF) and a Mascot search. The family includes five HSP70s induced by AcMNPV-infection and three constitutive cognate HSC70s that remained abundant in infected cells. Confocal microscopy revealed dynamic changes in subcellular localization of HSP/HSC70s in the course of infection. At the early stages (4 to 10 hpi), a fraction of HSPs is localized in distinct speckles in cytoplasm. The speckles contained ubiquitinylated proteins suggesting that they may be aggresomes where proteins targeted by ubiquitin are sequestered or processed for proteolysis. S. frugiperda HSP90 was identified in the 2D gels by Western blotting. Its amount was unchanged during infection. A selective inhibitor of HSP90, 17-AAG, decreased the rate of viral DNA synthesis in infected cells suggesting a supportive role of HSP90 in virus replication.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Insetos/metabolismo , Nucleopoliedrovírus/fisiologia , Spodoptera/metabolismo , Spodoptera/virologia , Animais , Eletroforese em Gel Bidimensional , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/genética , Proteínas de Insetos/química , Proteínas de Insetos/genética , Dados de Sequência Molecular , Nucleopoliedrovírus/genética , Spodoptera/química , Spodoptera/genética
10.
Chromosoma ; 118(5): 665-74, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19578867

RESUMO

The looping model of enhancer-promoter interactions predicts that these specific long-range interactions are supported by a certain class of proteins. In particular, the Drosophila transcription factor Zeste was hypothesized to facilitate long-distance associations between enhancers and promoters. We have re-examined the role of Zeste in supporting long-range interactions between an enhancer and a promoter using the white gene as a model system. The results show that Zeste binds to the upstream white promoter region and the enhancer that is responsible for white activation in the eyes. We have confirmed the previous finding that Zeste is not required for the activity of the eye enhancer and the promoter when they are located in close proximity to each other. However, inactivation of Zeste markedly affects the enhancer-promoter communication in transgenes when the eye enhancer and the white promoter are separated by a 3-kb spacer or the yellow gene. Zeste is also required for insulator bypass by the eye enhancer. Taken together, these results show that Zeste can support specific long-range interactions between enhancers and promoters.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Proteínas de Drosophila/fisiologia , Elementos Facilitadores Genéticos/fisiologia , Regiões Promotoras Genéticas/fisiologia , Animais , Drosophila melanogaster , Elementos Isolantes , Transgenes/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...