Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 13(10)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34683956

RESUMO

Diagnostic imaging of aggressive cancer with a high stroma content may benefit from the use of imaging contrast agents targeted with peptides that have high binding affinity to the extracellular matrix (ECM). In this study, we report the use of superparamagnetic iron-oxide nanoparticles (IO-NP) conjugated to a nonapeptide, CSGRRSSKC (CSG), which specifically binds to the laminin-nidogen-1 complex in tumours. We show that CSG-IO-NP accumulate in tumours, predominantly in the tumour ECM, following intravenous injection into a murine model of pancreatic neuroendocrine tumour (PNET). In contrast, a control untargeted IO-NP consistently show poor tumour uptake, and IO-NP conjugated to a pentapeptide. CREKA that bind fibrin clots in blood vessels show restricted uptake in the angiogenic vessels of the tumours. CSG-IO-NP show three-fold higher intratumoral accumulation compared to CREKA-IO-NP. Magnetic resonance imaging (MRI) T2-weighted scans and T2 relaxation times indicate significant uptake of CSG-IO-NP irrespective of tumour size, whereas the uptake of CREKA-IO-NP is only consistent in small tumours of less than 3 mm in diameter. Larger tumours with significantly reduced tumour blood vessels show a lack of CREKA-IO-NP uptake. Our data suggest CSG-IO-NP are particularly useful for detecting stroma in early and advanced solid tumours.

2.
EMBO Mol Med ; 11(12): e10923, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31709774

RESUMO

High extracellular matrix (ECM) content in solid cancers impairs tumour perfusion and thus access of imaging and therapeutic agents. We have devised a new approach to degrade tumour ECM, which improves uptake of circulating compounds. We target the immune-modulating cytokine, tumour necrosis factor alpha (TNFα), to tumours using a newly discovered peptide ligand referred to as CSG. This peptide binds to laminin-nidogen complexes in the ECM of mouse and human carcinomas with little or no peptide detected in normal tissues, and it selectively delivers a recombinant TNFα-CSG fusion protein to tumour ECM in tumour-bearing mice. Intravenously injected TNFα-CSG triggered robust immune cell infiltration in mouse tumours, particularly in the ECM-rich zones. The immune cell influx was accompanied by extensive ECM degradation, reduction in tumour stiffness, dilation of tumour blood vessels, improved perfusion and greater intratumoral uptake of the contrast agents gadoteridol and iron oxide nanoparticles. Suppressed tumour growth and prolonged survival of tumour-bearing mice were observed. These effects were attainable without the usually severe toxic side effects of TNFα.


Assuntos
Matriz Extracelular/metabolismo , Animais , Linhagem Celular , Técnicas de Visualização da Superfície Celular , Meios de Contraste/metabolismo , Feminino , Compostos Férricos/metabolismo , Gadolínio/metabolismo , Compostos Heterocíclicos/metabolismo , Humanos , Masculino , Camundongos , Nanopartículas/metabolismo , Compostos Organometálicos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
3.
Biomaterials ; 219: 119373, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31374479

RESUMO

Oncofetal fibronectin (FN-EDB) and tenascin-C C domain (TNC-C) are nearly absent in extracellular matrix of normal adult tissues but upregulated in malignant tissues. Both FN-EDB and TNC-C are developed as targets of antibody-based therapies. Here we used peptide phage biopanning to identify a novel targeting peptide (PL1, sequence: PPRRGLIKLKTS) that interacts with both FN-EDB and TNC-C. Systemic PL1-functionalized model nanoscale payloads [iron oxide nanoworms (NWs) and metallic silver nanoparticles] homed to glioblastoma (GBM) and prostate carcinoma xenografts, and to non-malignant angiogenic neovessels induced by VEGF-overexpression. Antibody blockage experiments demonstrated that PL1 tumor homing involved interactions with both receptor proteins. Treatment of GBM mice with PL1-targeted model therapeutic nanocarrier (NWs loaded with a proapoptotic peptide) resulted in reduced tumor growth and increased survival, whereas treatment with untargeted particles had no effect. PL1 peptide may have applications as an affinity ligand for delivery of diagnostic and therapeutic compounds to microenvironment of solid tumors.


Assuntos
Sistemas de Liberação de Medicamentos , Fibronectinas/metabolismo , Neoplasias/tratamento farmacológico , Peptídeos/uso terapêutico , Tenascina/metabolismo , Sequência de Aminoácidos , Animais , Apoptose , Linhagem Celular Tumoral , Compostos Férricos/química , Glioblastoma/tratamento farmacológico , Humanos , Imageamento por Ressonância Magnética , Nanopartículas Metálicas/química , Camundongos Nus , Nanopartículas/química , Neoplasias/diagnóstico por imagem , Prata/química
4.
J Control Release ; 308: 109-118, 2019 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-31255690

RESUMO

Tumor-selective drug conjugates can potentially improve the prognosis for patients affected by glioblastoma (GBM) - the most common and malignant type of brain cancer with no effective cure. Here we evaluated a novel tumor penetrating peptide that targets cell surface p32, LinTT1 (AKRGARSTA), as a GBM targeting ligand for systemically-administered nanoparticles. LinTT1-functionalization increased tumor homing of iron oxide nanoworms (NWs) across a panel of five GBM models ranging from infiltratively-disseminating to angiogenic phenotypes. LinTT1-NWs homed to CD31-positive tumor blood vessels, including to transdifferentiated endothelial cells, and showed co-localization with tumor macrophages and lymphatic vessels. LinTT1 functionalization also resulted in increased GBM delivery of other types of systemically-administered nanoparticles: silver nanoparticles and albumin-paclitaxel nanoparticles. Finally, LinTT1-guided proapoptotic NWs exerted strong anti-glioma activity in two models of GBM, including doubling the lifespan of the mice in an aggressive orthotopic stem cell-like GBM that recapitulates the histological hallmarks of human GBM. Our study suggests that LinTT1 targeting strategy can be used to increase GBM uptake of systemic nanoparticles for improved imaging and therapy.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Glioblastoma/tratamento farmacológico , Nanopartículas , Peptídeos/administração & dosagem , Albuminas/administração & dosagem , Albuminas/farmacocinética , Animais , Linhagem Celular Tumoral , Células Endoteliais/metabolismo , Feminino , Compostos Férricos/química , Glioblastoma/patologia , Humanos , Masculino , Nanopartículas Metálicas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Paclitaxel/administração & dosagem , Paclitaxel/farmacocinética , Peptídeos/química , Prata/química , Ensaios Antitumorais Modelo de Xenoenxerto
5.
J Pathol ; 245(2): 209-221, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29603739

RESUMO

High-grade brain cancer such as glioblastoma (GBM) remains an incurable disease. A common feature of GBM is the angiogenic vasculature, which can be targeted with selected peptides for payload delivery. We assessed the ability of micelle-tagged, vascular homing peptides RGR, CGKRK and NGR to specifically bind to blood vessels in syngeneic orthotopic GBM models. By using the peptide CGKRK to deliver the tumour necrosis factor (TNF) superfamily member LIGHT (also known as TNF superfamily member 14; TNFSF14) to angiogenic tumour vessels, we have generated a reagent that normalizes the brain cancer vasculature by inducing pericyte contractility and re-establishing endothelial barrier integrity. LIGHT-mediated vascular remodelling also activates endothelia and induces intratumoural high endothelial venules (HEVs), which are specialized blood vessels for lymphocyte infiltration. Combining CGKRK-LIGHT with anti-vascular endothelial growth factor and checkpoint blockade amplified HEV frequency and T-cell accumulation in GBM, which is often sparsely infiltrated by immune effector cells, and reduced tumour burden. Furthermore, CGKRK and RGR peptides strongly bound to blood vessels in freshly resected human GBM, demonstrating shared peptide-binding activities in mouse and human primary brain tumour vessels. Thus, peptide-mediated LIGHT targeting is a highly translatable approach in primary brain cancer to reduce vascular leakiness and enhance immunotherapy. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Inibidores da Angiogênese/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Peptídeos Penetradores de Células/metabolismo , Portadores de Fármacos , Glioblastoma/tratamento farmacológico , Neovascularização Patológica , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/farmacologia , Remodelação Vascular/efeitos dos fármacos , Vênulas/efeitos dos fármacos , Adulto , Idoso , Idoso de 80 Anos ou mais , Inibidores da Angiogênese/metabolismo , Animais , Neoplasias Encefálicas/irrigação sanguínea , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular , Composição de Medicamentos , Feminino , Glioblastoma/sangue , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Linfócitos/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Micelas , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Pericitos/efeitos dos fármacos , Pericitos/metabolismo , Pericitos/patologia , Fenótipo , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Vênulas/metabolismo , Vênulas/patologia
6.
Biomaterials ; 166: 52-63, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29544111

RESUMO

Cationic liposome-nucleic acid (CL-NA) complexes, which form spontaneously, are a highly modular gene delivery system. These complexes can be sterically stabilized via PEGylation [PEG: poly (ethylene glycol)] into nanoparticles (NPs) and targeted to specific tissues and cell types via the conjugation of an affinity ligand. However, there are currently no guidelines on how to effectively navigate the large space of compositional parameters that modulate the specific and nonspecific binding interactions of peptide-targeted NPs with cells. Such guidelines are desirable to accelerate the optimization of formulations with novel peptides. Using PEG-lipids functionalized with a library of prototypical tumor-homing peptides, we varied the peptide density and other parameters (binding motif, peptide charge, CL/DNA charge ratio) to study their effect on the binding and uptake of the corresponding NPs. We used flow cytometry to quantitatively assess binding as well as internalization of NPs by cultured cancer cells. Surprisingly, full peptide coverage resulted in less binding and internalization than intermediate coverage, with the optimum coverage varying between cell lines. In, addition, our data revealed that great care must be taken to prevent nonspecific electrostatic interactions from interfering with the desired specific binding and internalization. Importantly, such considerations must take into account the charge of the peptide ligand as well as the membrane charge density and the CL/DNA charge ratio. To test our guidelines, we evaluated the in vivo tumor selectivity of selected NP formulations in a mouse model of peritoneally disseminated human gastric cancer. Intraperitoneally administered peptide-tagged CL-DNA NPs showed tumor binding, minimal accumulation in healthy control tissues, and preferential penetration of smaller tumor nodules, a highly clinically relevant target known to drive recurrence of the peritoneal cancer.


Assuntos
DNA , Técnicas de Transferência de Genes , Lipossomos , Nanopartículas , Peptídeos , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Cátions , DNA/química , Terapia Genética/métodos , Humanos , Lipídeos/química , Lipossomos/química , Nanopartículas/química , Peptídeos/química
7.
Sci Rep ; 7(1): 14655, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29116108

RESUMO

Tumor-associated macrophages (TAMs) expressing the multi-ligand endocytic receptor mannose receptor (CD206/MRC1) contribute to tumor immunosuppression, angiogenesis, metastasis, and relapse. Here, we describe a peptide that selectively targets MRC1-expressing TAMs (MEMs). We performed in vivo peptide phage display screens in mice bearing 4T1 metastatic breast tumors to identify peptides that target peritoneal macrophages. Deep sequencing of the peptide-encoding inserts in the selected phage pool revealed enrichment of the peptide CSPGAKVRC (codenamed "UNO"). Intravenously injected FAM-labeled UNO (FAM-UNO) homed to tumor and sentinel lymph node MEMs in different cancer models: 4T1 and MCF-7 breast carcinoma, B16F10 melanoma, WT-GBM glioma and MKN45-P gastric carcinoma. Fluorescence anisotropy assay showed that FAM-UNO interacts with recombinant CD206 when subjected to reducing conditions. Interestingly, the GSPGAK motif is present in all CD206-binding collagens. FAM-UNO was able to transport drug-loaded nanoparticles into MEMs, whereas particles without the peptide were not taken up by MEMs. In ex vivo organ imaging, FAM-UNO showed significantly higher accumulation in sentinel lymph nodes than a control peptide. This study suggests applications for UNO peptide in diagnostic imaging and therapeutic targeting of MEMs in solid tumors.


Assuntos
Sistemas de Liberação de Medicamentos , Lectinas Tipo C/metabolismo , Macrófagos/efeitos dos fármacos , Neoplasias Mamárias Experimentais/tratamento farmacológico , Lectinas de Ligação a Manose/metabolismo , Peptídeos/uso terapêutico , Receptores de Superfície Celular/metabolismo , Animais , Sistemas de Liberação de Medicamentos/métodos , Feminino , Receptor de Manose , Camundongos , Camundongos Endogâmicos BALB C , Transplante de Neoplasias , Proteínas Recombinantes
8.
J Control Release ; 268: 49-56, 2017 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-29030222

RESUMO

Anti-angiogenic and vascular disrupting therapies rely on the dependence of tumors on new blood vessels to sustain tumor growth. We previously reported a potent vascular disrupting agent, a theranostic nanosystem consisting of a tumor vasculature-homing peptide (CGKRK) fused to a pro-apoptotic peptide [D(KLAKLAK)2] coated on iron oxide nanoparticles. This nanosystem showed promising therapeutic efficacy in glioblastoma (GBM) and breast cancer models. However, complete control of the tumors was not achieved, and some tumors became non-responsive to the treatment. Here we examined the non-responder phenomenon in an aggressive MCF10-CA1a breast tumor model. In the treatment-resistant tumors we noted the emergence of CD31-negative patent neovessels and a concomitant loss of tumor homing of the nanosystem. In vivo phage library screening in mice bearing non-responder tumors showed that compared to untreated and treatment-sensitive tumors, treatment sensitive tumors yield a distinct landscape of vascular homing peptides characterized by over-representation of peptides that target αv integrins. Our approach may be generally applicable to the development of targeted therapies for tumors that have failed treatment.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Nanopartículas/uso terapêutico , Neovascularização Patológica/tratamento farmacológico , Peptídeos/uso terapêutico , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neovascularização Patológica/patologia , Biblioteca de Peptídeos
9.
J Control Release ; 260: 142-153, 2017 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-28603028

RESUMO

Gastrointestinal and gynecological malignancies disseminate in the peritoneal cavity - a condition known as peritoneal carcinomatosis (PC). Intraperitoneal (IP) administration can be used to improve therapeutic index of anticancer drugs used for PC treatment. Activity of IP anticancer drugs can be further potentiated by encapsulation in nanocarriers and/or affinity targeting with tumor-specific affinity ligands, such as tumor homing peptides. Here we evaluated a novel tumor penetrating peptide, linTT1 (AKRGARSTA), as a PC targeting ligand for nanoparticles. We first demonstrated that the primary homing receptor for linTT1, p32 (or gC1qR), is expressed on the cell surface of peritoneal carcinoma cell lines of gastric (MKN-45P), ovarian (SKOV-3), and colon (CT-26) origin, and that peritoneal tumors in mice and clinical peritoneal carcinoma explants express p32 protein accessible from the IP space. Iron oxide nanoworms (NWs) functionalized with the linTT1 peptide were taken up and routed to mitochondria in cultured PC cells. NWs functionalized with linTT1 peptide in tandem with a pro-apoptotic [D(KLAKLAK)2] peptide showed p32-dependent cytotoxicity in MKN-45P, SKOV-3, and CT-26 cells. Upon IP administration in mice bearing MKN-45P, SKOV-3, and CT-26 tumors, linTT1-functionalized NWs showed robust homing and penetration into malignant lesions, whereas only a background accumulation was seen in control tissues. In tumors, the linTT1-NW accumulation was seen predominantly in CD31-positive blood vessels, in LYVE-1-positive lymphatic structures, and in CD11b-positive tumor macrophages. Experimental therapy of mice bearing peritoneal MKN-45P xenografts and CT-26 syngeneic tumors with IP linTT1-D(KLAKLAK)2-NWs resulted in significant reduction of weight of peritoneal tumors and significant decrease in the number of metastatic tumor nodules, whereas treatment with untargeted D(KLAKLAK)2-NWs had no effect. Our data show that targeting of p32 with linTT1 tumor-penetrating peptide improves tumor selectivity and antitumor efficacy of IP pro-apoptotic NWs. P32-directed intraperitoneal targeting of other anticancer agents and nanoparticles using peptides and other affinity ligands may represent a general strategy to increase their therapeutic index.


Assuntos
Proteínas de Transporte/metabolismo , Sistemas de Liberação de Medicamentos , Proteínas Mitocondriais/metabolismo , Nanoestruturas/administração & dosagem , Peptídeos/administração & dosagem , Neoplasias Peritoneais/metabolismo , Animais , Apoptose , Linhagem Celular Tumoral , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanoestruturas/uso terapêutico , Peptídeos/uso terapêutico , Neoplasias Peritoneais/tratamento farmacológico , Neoplasias Peritoneais/patologia , Carga Tumoral/efeitos dos fármacos
10.
Tumour Biol ; 39(5): 1010428317701628, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28468593

RESUMO

Peritoneal carcinomatosis results from dissemination of solid tumors in the peritoneal cavity, and is a common site of metastasis in patients with carcinomas of gastrointestinal or gynecological origin. Peritoneal carcinomatosis treatment is challenging as poorly vascularized, disseminated peritoneal micro-tumors are shielded from systemic anticancer drugs and drive tumor regrowth. Here, we describe the identification and validation of a tumor homing peptide CKRDLSRRC (IP3), which upon intraperitoneal administration delivers payloads to peritoneal metastases. IP3 peptide was identified by in vivo phage display on a mouse model of peritoneal carcinomatosis of gastric origin (MKN-45P), using high-throughput sequencing of the peptide-encoding region of phage genome as a readout. The IP3 peptide contains a hyaluronan-binding motif, and fluorescein-labeled IP3 peptide bound to immobilized hyaluronan in vitro. After intraperitoneal administration in mice bearing peritoneal metastases of gastric and colon origin, IP3 peptide homed robustly to macrophage-rich regions in peritoneal tumors, including poorly vascularized micro-tumors. Finally, we show that IP3 functionalization conferred silver nanoparticles the ability to home to peritoneal tumors of gastric and colonic origin, suggesting that it could facilitate targeted delivery of nanoscale payloads to peritoneal tumors. Collectively, our study suggests that the IP3 peptide has potential applications for targeting drugs, nanoparticles, and imaging agents to peritoneal tumors.


Assuntos
Carcinoma/tratamento farmacológico , Receptores de Hialuronatos/administração & dosagem , Peptídeos/administração & dosagem , Neoplasias Peritoneais/tratamento farmacológico , Animais , Bacteriófagos/genética , Carcinoma/genética , Carcinoma/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , Humanos , Receptores de Hialuronatos/genética , Camundongos , Nanopartículas/administração & dosagem , Nanopartículas/química , Metástase Neoplásica , Peptídeos/genética , Cavidade Peritoneal/patologia , Neoplasias Peritoneais/genética , Neoplasias Peritoneais/patologia
11.
Nano Lett ; 17(3): 1356-1364, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28178415

RESUMO

Antiangiogenic and vascular disrupting compounds have shown promise in cancer therapy, but tend to be only partially effective. We previously reported a potent theranostic nanosystem that was highly effective in glioblastoma and breast cancer mouse models, retarding tumor growth and producing some cures [ Agemy , L. et al. Proc. Natl. Acad. Sci. U.S.A. 2011 , 108 , 17450 - 17455 . Agemy , L. et al. Mol. Ther. 2013 , 21 , 2195 - 2204 .]. The nanosystem consists of iron oxide NPs ("nanoworms") coated with a composite peptide with tumor-homing and pro-apoptotic domains. The homing component targets tumor vessels by binding to p32/gC1qR at the surface or tumor endothelial cells. We sought to further improve the efficacy nanosystem by searching for an optimally effective homing peptide that would also incorporate a tumor-penetrating function. To this effect, we tested a panel of candidate p32 binding peptides with a sequence motif that conveys tumor-penetrating activity (CendR motif). We identified a peptide designated as Linear TT1 (Lin TT1) (sequence: AKRGARSTA) as most effective in causing tumor homing and penetration of the nanosystem. This peptide had the lowest affinity for p32 among the peptides tested. The low affinity may have moderated the avidity effect from the multivalent presentation on nanoparticles (NPs), such that the NPs avoid getting trapped by the so-called "binding-site barrier", which can hinder tissue penetration of compounds with a high affinity for their receptors. Treatment of breast cancer mice with the LinTT1 nanosystem showed greatly improved efficacy compared to the original system. These results identify a promising treatment modality and underscore the value of tumor penetration effect in improving the efficacy tumor treatment.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Nanopartículas/uso terapêutico , Peptídeos/uso terapêutico , Sequência de Aminoácidos , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Apoptose/efeitos dos fármacos , Mama/efeitos dos fármacos , Mama/metabolismo , Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Camundongos , Nanomedicina , Nanopartículas/química , Nanopartículas/metabolismo , Peptídeos/química , Peptídeos/metabolismo
12.
Biomaterials ; 104: 247-57, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27472162

RESUMO

Polymersomes are versatile nanoscale vesicles that can be used for cytoplasmic delivery of payloads. Recently, we demonstrated that pH-sensitive polymersomes exhibit an intrinsic selectivity towards intraperitoneal tumor lesions. A tumor homing peptide, iRGD, harbors a cryptic C-end Rule (CendR) motif that is responsible for neuropilin-1 (NRP-1) binding and for triggering extravasation and tumor penetration of the peptide. iRGD functionalization increases tumor selectivity and therapeutic efficacy of systemic drug-loaded nanoparticles in many tumor models. Here we studied whether intraperitoneally administered paclitaxel-loaded iRGD-polymersomes show improved efficacy in the treatment of peritoneal carcinomatosis. First, we demonstrated that the pH-sensitive polymersomes functionalized with RPARPAR (a prototypic CendR peptide) or iRGD internalize in the cells that express NRP-1, and that internalized polymersomes release their cargo inside the cytosol. CendR-targeted polymersomes loaded with paclitaxel were more cytotoxic on NRP-1-positive cells than on NRP-1-negative cells. In mice bearing peritoneal tumors of gastric (MKN-45P) or colon (CT26) origin, intraperitoneally administered RPARPAR and iRGD-polymersomes showed higher tumor-selective accumulation and penetration than untargeted polymersomes. Finally, iRGD-polymersomes loaded with paclitaxel showed improved efficacy in peritoneal tumor growth inhibition and in suppression of local dissemination compared to the pristine paclitaxel-polymersomes or Abraxane. Our study demonstrates that iRGD-functionalization improves efficacy of paclitaxel-polymersomes for intraperitoneal treatment of peritoneal carcinomatosis.


Assuntos
Nanocápsulas/administração & dosagem , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neuropilina-1/metabolismo , Oligopeptídeos/administração & dosagem , Oligopeptídeos/farmacocinética , Paclitaxel/administração & dosagem , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/química , Linhagem Celular Tumoral , Sinergismo Farmacológico , Infusões Parenterais , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanocápsulas/química , Nanoconjugados/administração & dosagem , Nanoconjugados/química , Paclitaxel/química , Polímeros/química , Resultado do Tratamento
13.
Nat Commun ; 7: 11980, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27351915

RESUMO

Traumatic brain injury (TBI) is a major health and socio-economic problem, but no pharmacological agent is currently approved for the treatment of acute TBI. Thus, there is a great need for advances in this field. Here, we describe a short peptide (sequence CAQK) identified by in vivo phage display screening in mice with acute brain injury. The CAQK peptide selectively binds to injured mouse and human brain, and systemically injected CAQK specifically homes to sites of brain injury in mouse models. The CAQK target is a proteoglycan complex upregulated in brain injuries. Coupling to CAQK increased injury site accumulation of systemically administered molecules ranging from a drug-sized molecule to nanoparticles. CAQK-coated nanoparticles containing silencing oligonucleotides provided the first evidence of gene silencing in injured brain parenchyma by systemically administered siRNA. These findings present an effective targeting strategy for the delivery of therapeutics in clinical management of acute brain injuries.


Assuntos
Lesões Encefálicas Traumáticas/terapia , Sistemas de Liberação de Medicamentos , Peptídeos , Idoso , Animais , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Matriz Extracelular/metabolismo , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade
14.
J Phys Chem B ; 120(26): 6439-53, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27203598

RESUMO

Cationic liposomes (CLs) are widely studied as carriers of DNA and short-interfering RNA for gene delivery and silencing, and related clinical trials are ongoing. Optimization of transfection efficiency (TE) requires understanding of CL-nucleic acid nanoparticle (NP) interactions with cells, NP endosomal pathways, endosomal escape, and events leading to release of active nucleic acid from the lipid carrier. Here, we studied endosomal pathways and TE of surface-functionalized CL-DNA NPs in PC-3 prostate cancer cells displaying overexpressed integrin and neuropilin-1 receptors. The NPs contained RGD-PEG-lipid or RPARPAR-PEG-lipid, targeting integrin, and neuropilin-1 receptors, respectively, or control PEG-lipid. Fluorescence colocalization using Rab11-GFP and Lysotracker enabled simultaneous colocalization of NPs with recycling endosome (Rab11) and late endosome/lysosome (Rab7/Lysotracker) pathways at increasing mole fractions of pentavalent MVL5 (+5 e) at low (10 mol %), high (50 mol %), and very high (70 mol %) membrane charge density (σM). For these cationic NPs (lipid/DNA molar charge ratio, ρchg = 5), the influence of membrane charge density on pathway selection and transfection efficiency is similar for both peptide-PEG NPs, although, quantitatively, the effect is larger for RGD-PEG compared to RPARPAR-PEG NPs. At low σM, peptide-PEG NPs show preference for the recycling endosome over the late endosome/lysosome pathway. Increases in σM, from low to high, lead to decreases in colocalization with recycling endosomes and simultaneous increases in colocalization with the late endosome/lysosome pathway. Combining colocalization and functional TE data at low and high σM shows that higher TE correlates with a larger fraction of NPs colocalized with the late endosome/lysosome pathway while lower TE correlates with a larger fraction of NPs colocalized with the Rab11 recycling pathway. The findings lead to a hypothesis that increases in σM, leading to enhanced late endosome/lysosome pathway selection and higher TE, result from increased nonspecific electrostatic attractions between NPs and endosome luminal membranes, and conversely, enhanced recycling pathway for NPs and lower TE are due to weaker attractions. Surprisingly, at very high σM, the inverse relation between the two pathways observed at low and high σM breaks down, pointing to a more complex NP pathway behavior.


Assuntos
DNA/administração & dosagem , Endossomos/metabolismo , Lipossomos/química , Nanopartículas/administração & dosagem , Transfecção , Aminas , Cátions/química , Linhagem Celular Tumoral , DNA/química , DNA/metabolismo , Corantes Fluorescentes , Terapia Genética/métodos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Integrinas/metabolismo , Masculino , Potenciais da Membrana/fisiologia , Nanopartículas/química , Nanopartículas/metabolismo , Neuropilina-1/metabolismo , Transfecção/métodos , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
15.
J Control Release ; 232: 188-95, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27106816

RESUMO

Tumor penetrating peptides contain a cryptic (R/K)XX(R/K) CendR element that must be C-terminally exposed to trigger neuropilin-1 (NRP-1) binding, cellular internalization and malignant tissue penetration. The specific proteases that are involved in processing of tumor penetrating peptides identified using phage display are not known. Here we design de novo a tumor-penetrating peptide based on consensus cleavage motif of urokinase-type plasminogen activator (uPA). We expressed the peptide, uCendR (RPARSGR↓SAGGSVA, ↓ shows cleavage site), on phage or coated it onto silver nanoparticles and showed that it is cleaved by uPA, and that the cleavage triggers binding to recombinant NRP-1 and to NPR-1-expressing cells. Upon systemic administration to mice bearing uPA-overexpressing breast tumors, FAM-labeled uCendR peptide and uCendR-coated nanoparticles preferentially accumulated in tumor tissue. We also show that uCendR phage internalization into cultured cancer cells and its penetration in explants of murine tumors and clinical tumor explants can be potentiated by combining the uCendR peptide with tumor-homing module, CRGDC. Our work demonstrates the feasibility of designing tumor-penetrating peptides that are activated by a specific tumor protease. As upregulation of protease expression is one of the hallmarks of cancer, and numerous tumor proteases have substrate specificities compatible with proteolytic unmasking of cryptic CendR motifs, the strategy described here may provide a generic approach for designing proteolytically-actuated peptides for tumor-penetrative payload delivery.


Assuntos
Portadores de Fármacos/administração & dosagem , Neoplasias Mamárias Animais/metabolismo , Peptídeos/administração & dosagem , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Animais , Bacteriófago T7 , Linhagem Celular Tumoral , Portadores de Fármacos/farmacocinética , Humanos , Nanopartículas Metálicas/administração & dosagem , Camundongos Endogâmicos BALB C , Peptídeos/farmacocinética , Prata/administração & dosagem , Prata/farmacocinética
16.
Chembiochem ; 17(7): 570-5, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26895508

RESUMO

Cell surface p32, the target of LyP-1 homing peptide, is upregulated in tumors and atherosclerotic plaques and has been widely used as a receptor for systemic delivery of payloads. Here, we identified an improved LyP-1-mimicking peptide (TT1, CKRGARSTC). We used this peptide in a fluorescence polarization-based high-throughput screening of a 50,000-compound chemical library and identified a panel of compounds that bind p32 with low micromolar affinity. Among the hits identified in the screen, two compounds were shown to specifically bind to p32 in multiple assays. One of these compounds was chosen for an in vivo study. Nanoparticles surface-functionalized with this compound specifically adhered to surfaces coated with recombinant p32 and, when injected intravenously, homed to p32-expressing breast tumors in mice. This compound provides a lead for the development of p32-targeted affinity ligands that circumvent some of the limitations of peptide-based probes in guided drug delivery.


Assuntos
Aminopiridinas/química , Neoplasias da Mama/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Etilenodiaminas/química , Proteínas Mitocondriais/administração & dosagem , Peptídeos Cíclicos/administração & dosagem , Aminopiridinas/farmacologia , Animais , Antineoplásicos/administração & dosagem , Proteínas de Transporte , Linhagem Celular Tumoral , Etilenodiaminas/farmacologia , Feminino , Humanos , Ligantes , Camundongos , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Nanopartículas/química
17.
Bioorg Med Chem Lett ; 26(6): 1618-1623, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26874401

RESUMO

Because nucleic acids (NAs) have immense potential value as therapeutics, the development of safe and effective synthetic NA vectors continues to attract much attention. In vivo applications of NA vectors require stabilized, nanometer-scale particles, but the commonly used approaches of steric stabilization with a polymer coat (e.g., PEGylation; PEG=poly(ethylene glycol)) interfere with attachment to cells, uptake, and endosomal escape. Conjugation of peptides to PEG-lipids can improve cell attachment and uptake for cationic liposome-DNA (CL-DNA) complexes. We present several synthetic approaches to peptide-PEG-lipids and discuss their merits and drawbacks. A lipid-PEG-amine building block served as the common key intermediate in all synthetic routes. Assembling the entire peptide-PEG-lipid by manual solid phase peptide synthesis (employing a lipid-PEG-carboxylic acid) allowed gram-scale synthesis but is mostly applicable to linear peptides connected via their N-terminus. Conjugation via thiol-maleimide or strain-promoted (copper-free) azide-alkyne cycloaddition chemistry is highly amenable to on-demand preparation of peptide-PEG-lipids, and the appropriate PEG-lipid precursors are available in a single chemical step from the lipid-PEG-amine building block. Azide-alkyne cycloaddition is especially suitable for disulfide-bridged peptides such as iRGD (cyclic CRGDKGPDC). Added at 10 mol% of a cationic/neutral lipid mixture, the peptide-PEG-lipids stabilize the size of CL-DNA complexes. They also affect cell attachment and uptake of nanoparticles in a peptide-dependent manner, thereby providing a platform for preparing stabilized, affinity-targeted CL-DNA nanoparticles.


Assuntos
DNA/química , Lipídeos/química , Lipossomos/química , Peptídeos Cíclicos/síntese química , Polietilenoglicóis/química , Cátions/química , Humanos , Lipossomos/síntese química , Estrutura Molecular , Nanopartículas/química , Peptídeos Cíclicos/química
18.
Nanoscale ; 8(17): 9096-101, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-26646247

RESUMO

Affinity targeting is used to deliver nanoparticles to cells and tissues. For efficient targeting, it is critical to consider the expression and accessibility of the relevant receptors in the target cells. Here, we describe isotopically barcoded silver nanoparticles (AgNPs) as a tool for auditing affinity ligand receptors in cells. Tumor penetrating peptide RPARPAR (receptor: NRP-1) and tumor homing peptide GKRK (receptor: p32) were used as affinity ligands on the AgNPs. The binding and uptake of the peptide-functionalized AgNPs by cultured PPC-1 prostate cancer and M21 melanoma cells was dependent on the cell surface expression of the cognate peptide receptors. Barcoded peptide-functionalized AgNPs were synthesized from silver and palladium isotopes. The cells were incubated with a cocktail of the barcoded nanoparticles [RPARPAR (R), GKRK (K), and control], and cellular binding and internalization of each type of nanoparticle was assessed by inductively coupled plasma mass spectrometry. The results of isotopic analysis were in agreement with data obtained using optical methods. Using ratiometric measurements, we were able to classify the PPC-1 cell line as mainly NRP-1-positive, with 75 ± 5% R-AgNP uptake, and the M21 cell line as only p32-positive, with 89 ± 9% K-AgNP uptake. The isotopically barcoded multiplexed AgNPs are useful as an in vitro ratiometric phenotyping tool and have potential uses in functional evaluation of the expression of accessible homing peptide receptors in vivo.


Assuntos
Técnicas Citológicas , Nanopartículas Metálicas , Prata , Linhagem Celular Tumoral , Humanos , Isótopos , Masculino , Peptídeos , Fenótipo
19.
ACS Nano ; 9(6): 6233-41, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-26034817

RESUMO

The luminescence lifetime of nanocrystalline silicon is typically on the order of microseconds, significantly longer than the nanosecond lifetimes exhibited by fluorescent molecules naturally present in cells and tissues. Time-gated imaging, where the image is acquired at a time after termination of an excitation pulse, allows discrimination of a silicon nanoparticle probe from these endogenous signals. Because of the microsecond time scale for silicon emission, time-gated imaging is relatively simple to implement for this biocompatible and nontoxic probe. Here a time-gated system with ∼10 ns resolution is described, using an intensified CCD camera and pulsed LED or laser excitation sources. The method is demonstrated by tracking the fate of mesoporous silicon nanoparticles containing the tumor-targeting peptide iRGD, administered by retro-orbital injection into live mice. Imaging of such systemically administered nanoparticles in vivo is particularly challenging because of the low concentration of probe in the targeted tissues and relatively high background signals from tissue autofluorescence. Contrast improvements of >100-fold (relative to steady-state imaging) is demonstrated in the targeted tissues.


Assuntos
Luminescência , Nanopartículas/química , Silício/química , Animais , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/administração & dosagem , Silício/administração & dosagem
20.
Breast Cancer (Auckl) ; 9(Suppl 2): 79-87, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-27385913

RESUMO

Tumor-homing peptides with tissue-penetrating properties increase the efficacy of targeted cancer therapy by delivering an anticancer agent to the tumor interior. LyP-1 (CGNKRTRGC) and iRGD (CRGDKGPDC) are founding members of this class of peptides. The presence of the cysteines forming the cyclizing disulfide bond complicates conjugation of these peptides with other molecules, such as drugs. Here, we report the synthesis of conjugatable disulfide-bridged peptides and their conjugation to biologically important molecules. We have synthesized the LyP-1, iRGD, and CRGDC (GACRGDCLGA) peptides with a cysteine or maleimidohexanoic acid added externally at N-terminus of the sequences. Subsequent conjugation to payloads yielded stable compounds in which the tumor-homing properties of the peptide and the biological activity of the payload were retained.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...