Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Parasitol Drugs Drug Resist ; 17: 186-190, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34673330

RESUMO

Emerging artemisinin resistance in Plasmodium falciparum malaria has the potential to become a global public health crisis. In Southeast Asia, this phenomenon clinically manifests in the form of delayed parasite clearance following artemisinin treatment. Reduced artemisinin susceptibility is limited to the early ring stage window, which is sufficient to allow parasites to survive the short half-life of artemisinin exposure. A screen of known clinically-implemented antimalarial drugs was performed to identify a drug capable of enhancing the killing activity of artemisinins during this critical resistance window. As a result, lumefantrine was found to increase the killing activity of artemisinin against an artemisinin-resistant clinical isolate harboring the C580Y kelch13 mutation. Isobologram analysis revealed synergism during the early ring stage resistance window, when lumefantrine was combined with artemether, an artemisinin derivative clinically partnered with lumefantrine. These findings suggest that lumefantrine should be clinically explored as a partner drug in artemisinin-based combination therapies to control emerging artemisinin resistance.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Resistência a Medicamentos , Humanos , Lumefantrina , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/genética , Proteínas de Protozoários
3.
Am J Trop Med Hyg ; 105(2): 421-424, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34170846

RESUMO

During the COVID-19 pandemic, Thailand implemented a quarantine program at approved quarantine facilities for every international traveler. Here, we report an epidemiological and genomic investigation of a COVID-19 cluster consisting of seven healthcare workers (HCWs) at a quarantine facility and its partnered hospital in Thailand. Outbreak investigations were implemented to obtain contact tracing data and to establish chains of transmission. Genomic sequencing of SARS-CoV-2 with samples within the cohort was performed. Investigations of 951 HCWs and staff with quarantined travelers were implemented to determine the chain of transmission. Genomic and outbreak investigations identified the international travelers infected with the B.1.1.31 SARS-CoV-2 lineage as the source of this outbreak. The genomic data and the investigated timeline revealed a putative transmission chain among HCWs, pointing toward the transmission via the use of common living quarters at the investigated quarantine site. The evaluation of this cohort has led to a policy recommendation on quarantine facility management. International travel quarantine is an important strategy to contain importation of COVID-19 cases. However, a quarantine facility is likely to become a potential hotspot, requiring thorough preventive measures. Reducing the exposure risk by providing private living quarters and scheduling clinical duties at a quarantine site separated from the conventional healthcare workforce have been implemented.


Assuntos
COVID-19/epidemiologia , COVID-19/transmissão , Surtos de Doenças/estatística & dados numéricos , Genômica/métodos , Pessoal de Saúde/estatística & dados numéricos , Quarentena , SARS-CoV-2/genética , COVID-19/diagnóstico , COVID-19/prevenção & controle , Estudos de Coortes , Surtos de Doenças/prevenção & controle , Feminino , Genoma Viral , Pessoal de Saúde/normas , Humanos , Análise de Sequência de DNA , Tailândia/epidemiologia
5.
Virus Res ; 292: 198233, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33227343

RESUMO

Coronavirus Disease 2019 (COVID-19) is a global public health threat. Genomic surveillance of SARS-CoV-2 was implemented in March of 2020 at a major diagnostic hub in Bangkok, Thailand. Several virus lineages supposedly originated in many countries were found, and a Thai-specific lineage, designated A/Thai-1, has expanded to be predominant in Thailand. A virus sample in the SARS-CoV-2 A/Thai-1 lineage contains a frame-shift deletion at ORF7a, encoding a putative host antagonizing factor of the virus.


Assuntos
COVID-19/epidemiologia , Genoma Viral , SARS-CoV-2/genética , Proteínas Virais/genética , COVID-19/prevenção & controle , COVID-19/virologia , Monitoramento Epidemiológico , Mutação da Fase de Leitura , Genômica , Humanos , Filogenia , Saúde Pública , Tailândia
6.
Artigo em Inglês | MEDLINE | ID: mdl-30580023

RESUMO

Artemisinin derivatives and their partner drugs in artemisinin combination therapies (ACTs) have played a pivotal role in global malaria mortality reduction during the last two decades. The loss of artemisinin efficacy due to evolving drug-resistant parasites could become a serious global health threat. Dihydroartemisinin-piperaquine is a well tolerated and generally highly effective ACT. The implementation of a partner drug in ACTs is critical in the control of emerging artemisinin resistance. Even though artemisinin is highly effective in parasite clearance, it is labile in the human body. A partner drug is necessary for killing the remaining parasites when the pulses of artemisinin have ceased. A population of Plasmodium falciparum parasites in Cambodia and adjacent countries has become resistant to piperaquine. Increased copy number of the genes encoding the haemoglobinases Plasmepsin II and Plasmepsin III has been linked with piperaquine resistance by genome-wide association studies and in clinical trials, leading to the use of increased plasmepsin II/plasmepsin III copy number as a molecular marker for piperaquine resistance. Here we demonstrate that overexpression of plasmepsin II and plasmepsin III in the 3D7 genetic background failed to change the susceptibility of P. falciparum to artemisinin, chloroquine and piperaquine by both a standard dose-response analysis and a piperaquine survival assay. Whilst plasmepsin copy number polymorphism is currently implemented as a molecular surveillance resistance marker, further studies to discover the molecular basis of piperaquine resistance and potential epistatic interactions are needed.


Assuntos
Antimaláricos/farmacologia , Artesunato/farmacologia , Ácido Aspártico Endopeptidases/genética , Cloroquina/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Proteínas de Protozoários/genética , Quinolinas/farmacologia , Camboja , Resistência a Medicamentos , Dosagem de Genes , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana , Plasmodium falciparum/enzimologia
7.
Sci Rep ; 8(1): 12622, 2018 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-30135481

RESUMO

Artemisinin is the most rapidly effective drug for Plasmodium falciparum malaria treatment currently in clinical use. Emerging artemisinin-resistant parasites pose a great global health risk. At present, the level of artemisinin resistance is still relatively low with evidence pointing towards a trade-off between artemisinin resistance and fitness loss. Here we show that artemisinin-resistant P. falciparum isolates from Cambodia manifested fitness loss, showing fewer progenies during the intra-erythrocytic developmental cycle. The loss in fitness was exacerbated under the condition of low exogenous amino acid supply. The resistant parasites failed to undergo maturation, whereas their drug-sensitive counterparts were able to complete the erythrocytic cycle under conditions of amino acid deprivation. The artemisinin-resistant phenotype was not stable, and loss of the phenotype was associated with changes in the expression of a putative target, Exp1, a membrane glutathione transferase. Analysis of SNPs in haemoglobin processing genes revealed associations with parasite clearance times, suggesting changes in haemoglobin catabolism may contribute to artemisinin resistance. These findings on fitness and protein homeostasis could provide clues on how to contain emerging artemisinin-resistant parasites.


Assuntos
Resistência a Medicamentos/genética , Aptidão Genética/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Aminoácidos/genética , Aminoácidos/metabolismo , Antimaláricos/farmacologia , Artemisininas/farmacologia , Camboja , Resistência a Medicamentos/fisiologia , Genótipo , Humanos , Malária Falciparum/parasitologia , Fenótipo , Plasmodium falciparum/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Inanição/metabolismo
8.
Asian Pac J Trop Med ; 9(11): 1048-1054, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27890363

RESUMO

OBJECTIVE: To understand the cause for the differences between potentially mild Southeast Asian and the more pathogenic ZIKV in South America. METHODS: A comparative genomic analysis was performed to determine putative causations stemming from ZIKV. RESULTS: Phylogenetic analyses integrating geographical and time factors revealed that Southeast Asian ZIKV might not be the direct source of South American outbreaks as previously speculated. Amino acid residues unique to South American ZIKV isolates at the envelope, pr and NS1 proteins are listed and shown in the structural context. These unique residues on external viral proteins are not found in Southeast Asian ZIKV and could be responsible for the ongoing outbreak either via an intrinsic property of the virus or interactions with human immunity. Only a selected few primer/probe sets currently in clinical use were identified of being capable of detecting ZIKV strains worldwide. The envelope proteins of dengue virus (DENV) and ZIKV also showed a remarkable degree of similarity especially at the surface residues. CONCLUSIONS: These findings may help explain the cross-reactivity of DENV antibodies to ZIKV. Thus, major caveats must be exercised in using existing diagnostic tools for ZIKV.

9.
Malar J ; 13: 150, 2014 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-24745605

RESUMO

BACKGROUND: Antifolates are currently in clinical use for malaria preventive therapy and treatment. The drugs kill the parasites by targeting the enzymes in the de novo folate pathway. The use of antifolates has now been limited by the spread of drug-resistant mutations. GTP cyclohydrolase I (GCH1) is the first and the rate-limiting enzyme in the folate pathway. The amplification of the gch1 gene found in certain Plasmodium falciparum isolates can cause antifolate resistance and influence the course of antifolate resistance evolution. These findings showed the importance of P. falciparum GCH1 in drug resistance intervention. However, little is known about P. falciparum GCH1 in terms of kinetic parameters and functional assays, precluding the opportunity to obtain the key information on its catalytic reaction and to eventually develop this enzyme as a drug target. METHODS: Plasmodium falciparum GCH1 was cloned and expressed in bacteria. Enzymatic activity was determined by the measurement of fluorescent converted neopterin with assay validation by using mutant and GTP analogue. The genetic complementation study was performed in ∆folE bacteria to functionally identify the residues and domains of P. falciparum GCH1 required for its enzymatic activity. Plasmodial GCH1 sequences were aligned and structurally modeled to reveal conserved catalytic residues. RESULTS: Kinetic parameters and optimal conditions for enzymatic reactions were determined by the fluorescence-based assay. The inhibitor test against P. falciparum GCH1 is now possible as indicated by the inhibitory effect by 8-oxo-GTP. Genetic complementation was proven to be a convenient method to study the function of P. falciparum GCH1. A series of domain truncations revealed that the conserved core domain of GCH1 is responsible for its enzymatic activity. Homology modelling fits P. falciparum GCH1 into the classic Tunnelling-fold structure with well-conserved catalytic residues at the active site. CONCLUSIONS: Functional assays for P. falciparum GCH1 based on enzymatic activity and genetic complementation were successfully developed. The assays in combination with a homology model characterized the enzymatic activity of P. falciparum GCH1 and the importance of its key amino acid residues. The potential to use the assay for inhibitor screening was validated by 8-oxo-GTP, a known GTP analogue inhibitor.


Assuntos
GTP Cicloidrolase/genética , GTP Cicloidrolase/metabolismo , Plasmodium falciparum/enzimologia , Domínio Catalítico , Clonagem Molecular , Análise Mutacional de DNA , Nucleotídeos de Desoxiguanina/metabolismo , Inibidores Enzimáticos/metabolismo , Expressão Gênica , Teste de Complementação Genética , Cinética , Modelos Moleculares , Plasmodium falciparum/genética , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA