Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Biochem ; 116(12): 2814-23, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25981537

RESUMO

Phospholipase C-related but catalytically inactive protein (PRIP) was first isolated as an inositol 1,4,5-trisphosphate binding protein. We generated PRIP gene-deficient mice which exhibited the increased bone mineral density and trabecular bone volume, indicating that PRIP is implicated in the regulation of bone properties. In this study, we investigated the possible mechanisms by which PRIP plays a role in bone morphogenetic protein (BMP) signaling, by analyzing the culture of primary cells isolated from calvaria of two genotypes, the wild type and a mutant. In the mutant culture, enhanced osteoblast differentiation was observed by measuring alkaline phosphatase staining and activity. The promoter activity of Id1 gene, responding immediately to BMP, was also more increased. Smad1/5 phosphorylation in response to BMP showed an enhanced peak and was more persistent in mutant cells, but the dephosphorylation process was not different between the two genotypes. The luciferase assay using calvaria cells transfected with the Smad1 mutated as a constitutive active form showed increased transcriptional activity at similar levels between the genotypes. The expression of BMP receptors was not different between the genotypes. BMP-induced phosphorylation of Smad1/5 was robustly decreased in wild type cells, but not in mutant cells, by pretreatment with DB867, an inhibitor of methyltransferase of inhibitory Smad6. Furthermore, BMP-induced translocation of Smad6 from nucleus to cytosol was not much observed in PRIP-deficient cells. These results indicate that PRIP is implicated in BMP-induced osteoblast differentiation by the negative regulation of Smad phosphorylation, through the methylation of inhibitory Smad6.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular/genética , Coativadores de Receptor Nuclear/genética , Osteogênese/genética , Proteína Smad6/metabolismo , Animais , Regulação da Expressão Gênica , Metilação , Camundongos , Coativadores de Receptor Nuclear/metabolismo , Osteoblastos/metabolismo , Fosforilação , Cultura Primária de Células , Regiões Promotoras Genéticas , Transdução de Sinais/genética , Proteína Smad1/genética , Proteína Smad1/metabolismo , Proteína Smad5/genética , Proteína Smad5/metabolismo , Proteína Smad6/genética
2.
J Biol Chem ; 286(35): 31032-31042, 2011 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-21757756

RESUMO

PRIP (phospholipase C-related, but catalytically inactive protein) is a novel protein isolated in this laboratory. PRIP-deficient mice showed increased serum gonadotropins, but decreased gonadal steroid hormones. This imbalance was similar to that for the cause of bone disease, such as osteoporosis. In the present study, therefore, we analyzed mutant mice with special reference to the bone property. We first performed three-dimensional analysis of the femur of female mice. The bone mineral density and trabecular bone volume were higher in mutant mice. We further performed histomorphometrical assay of bone formation parameters: bone formation rate, mineral apposition rate, osteoid thickness, and osteoblast number were up-regulated in the mutant, indicating that increased bone mass is caused by the enhancement of bone formation ability. We then cultured primary cells isolated from calvaria prepared from both genotypes. In mutant mice, osteoblast differentiation, as assessed by alkaline phosphatase activity and the expression of osteoblast differentiation marker genes, was enhanced. Moreover, we analyzed the phosphorylation of Smad1/5/8 in response to bone morphogenetic protein, with longer phosphorylation in the mutant. These results indicate that PRIP is implicated in the negative regulation of bone formation.


Assuntos
Coativadores de Receptor Nuclear/metabolismo , Osteogênese/fisiologia , Fosfolipases Tipo C/metabolismo , Animais , Osso e Ossos/metabolismo , Catálise , Diferenciação Celular , Feminino , Fêmur/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Osteoblastos/citologia , Osteoclastos/citologia , Ovariectomia , Fosforilação , Proteínas Smad/metabolismo , Tomografia Computadorizada por Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...