Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(3): e1012091, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38478584

RESUMO

No antiviral drugs currently are available for treatment of infection by hepatitis A virus (HAV), a causative agent of acute hepatitis, a potentially life-threatening disease. Chemical screening of a small-compound library using nanoluciferase-expressing HAV identified loxapine succinate, a selective dopamine receptor D2 antagonist, as a potent inhibitor of HAV propagation in vitro. Loxapine succinate did not inhibit viral entry nor internal ribosome entry site (IRES)-dependent translation, but exhibited strong inhibition of viral RNA replication. Blind passage of HAV in the presence of loxapine succinate resulted in the accumulation of viruses containing mutations in the 2C-encoding region, which contributed to resistance to loxapine succinate. Analysis of molecular dynamics simulations of the interaction between 2C and loxapine suggested that loxapine binds to the N-terminal region of 2C, and that resistant mutations impede these interactions. We further demonstrated that administration of loxapine succinate to HAV-infected Ifnar1-/- mice (which lack the type I interferon receptor) results in decreases in the levels of fecal HAV RNA and of intrahepatic HAV RNA at an early stage of infection. These findings suggest that HAV protein 2C is a potential target for antivirals, and provide novel insights into the development of drugs for the treatment of hepatitis A.


Assuntos
Vírus da Hepatite A , Loxapina , Animais , Camundongos , Vírus da Hepatite A/genética , Vírus da Hepatite A/metabolismo , Biossíntese de Proteínas , Replicação Viral/genética , RNA/metabolismo , Proteínas Virais/metabolismo , RNA Viral/genética , RNA Viral/metabolismo
2.
PLoS Negl Trop Dis ; 18(1): e0011885, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38190404

RESUMO

Dengue is a mosquito-borne disease that has spread to over 100 countries. Its symptoms vary from the relatively mild acute febrile illness called dengue fever to the much more severe dengue shock syndrome. Dengue is caused by dengue virus (DENV), which belongs to the Flavivirus genus of the family Flaviviridae. There are four serotypes of DENV, i.e., DENV1 to DENV4, and each serotype is divided into distinct genotypes. Thailand is an endemic area where all four serotypes of DENV co-circulate. Genome sequencing of the DENV2 that was isolated in Thailand in 2016 and 2017 revealed the emergence of the Cosmopolitan genotype and its co-circulation with the Asian-I genotype. However, it was unclear whether different genotypes have different levels of viral replication and pathogenicity. Focus-forming assay (FFA) results showed that clinical isolates of these genotypes differed in focus size and proliferative capacity. Using circular polymerase extension reaction, we generated parental and chimeric viruses with swapped genes between these two DENV2 genotypes, and compared their focus sizes and infectivity titers using FFA. The results showed that the focus size was larger when the structural proteins and/or non-structural NS1-NS2B proteins were derived from the Cosmopolitan virus. The infectious titers were consistent with the focus sizes. Single-round infectious particle assay results confirmed that chimeric viruses with Cosmopolitan type structural proteins, particularly prM/E, had significantly increased luciferase activity. Replicon assay results showed that Cosmopolitan NS1-NS2B proteins had increased reporter gene expression levels. Furthermore, in interferon-receptor knock-out mice, viruses with Cosmopolitan structural and NS1-NS2B proteins had higher titers in the blood, and caused critical disease courses. These results suggested that differences in the sequences within the structural and NS1-NS2B proteins may be responsible for the differences in replication, pathogenicity, and infectivity between the Asian-I and Cosmopolitan viruses.


Assuntos
Vírus da Dengue , Dengue , Animais , Camundongos , Dengue/epidemiologia , Virulência , Sorogrupo , Genótipo , Replicação Viral
3.
Chem Pharm Bull (Tokyo) ; 72(1): 41-47, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38171903

RESUMO

The capsid of human immunodeficiency virus type 1 (HIV-1) forms a conical structure by assembling oligomers of capsid (CA) proteins and is a virion shell that encapsulates viral RNA. The inhibition of the CA function could be an appropriate target for suppression of HIV-1 replication because the CA proteins are highly conserved among many strains of HIV-1, and the drug targeting CA, lenacapavir, has been clinically developed by Gilead Sciences, Inc. Interface hydrophobic interactions between two CA molecules via the Trp184 and Met185 residues in the CA sequence are indispensable for conformational stabilization of the CA multimer. Our continuous studies found two types of small molecules with different scaffolds, MKN-1 and MKN-3, designed by in silico screening as a dipeptide mimic of Trp184 and Met185 have significant anti-HIV-1 activity. In the present study, MKN-1 derivatives have been designed and synthesized. Their structure-activity relationship studies found some compounds having potent anti-HIV activity. The present results should be useful in the design of novel CA-targeting molecules with anti-HIV activity.


Assuntos
Fármacos Anti-HIV , HIV-1 , Humanos , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Montagem de Vírus , Capsídeo/metabolismo , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/química , Fármacos Anti-HIV/metabolismo
4.
RSC Adv ; 13(3): 2156-2167, 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36712613

RESUMO

The HIV-1 capsid is a shell that encapsulates viral RNA, and forms a conical structure by assembling oligomers of capsid (CA) proteins. Since the CA proteins are highly conserved among many strains of HIV-1, the inhibition of the CA function could be an appropriate goal for suppression of HIV-1 replication, but to date, no drug targeting CA has been developed. Hydrophobic interactions between two CA molecules through Trp184 and Met185 in the protein are known to be indispensable for conformational stabilization of the CA multimer. In our previous study, a small molecule designed by in silico screening as a dipeptide mimic of Trp184 and Met185 in the interaction site was synthesized and found to have significant anti-HIV-1 activity. In the present study, molecules with different scaffolds based on a dipeptide mimic of Trp184 and Met185 have been designed and synthesized. Their significant anti-HIV activity and their advantages compared to the previous compounds were examined. The present results should be useful in the design of novel CA-targeting anti-HIV agents.

5.
Viruses ; 14(4)2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35458549

RESUMO

Lamellarin α 20-sulfate is a cell-impenetrable marine alkaloid that can suppress infection that is mediated by the envelope glycoprotein of human immunodeficiency virus type 1. We explored the antiviral action and mechanisms of this alkaloid against emerging enveloped RNA viruses that use endocytosis for infection. The alkaloid inhibited the infection of retroviral vectors that had been pseudotyped with the envelope glycoprotein of Ebola virus and SARS-CoV-2. The antiviral effects of lamellarin were independent of the retrovirus Gag-Pol proteins. Interestingly, although heparin and dextran sulfate suppressed the cell attachment of vector particles, lamellarin did not. In silico structural analyses of the trimeric glycoprotein of the Ebola virus disclosed that the principal lamellarin-binding site is confined to a previously unappreciated cavity near the NPC1-binding site and fusion loop, whereas those for heparin and dextran sulfate were dispersed across the attachment and fusion subunits of the glycoproteins. Notably, lamellarin binding to this cavity was augmented under conditions where the pH was 5.0. These results suggest that the final action of the alkaloid against Ebola virus is specific to events following endocytosis, possibly during conformational glycoprotein changes in the acidic environment of endosomes. Our findings highlight the unique biological and physicochemical features of lamellarin α 20-sulfate and should lead to the further use of broadly reactive antivirals to explore the structural mechanisms of virus replication.


Assuntos
Alcaloides , Tratamento Farmacológico da COVID-19 , Ebolavirus , Doença pelo Vírus Ebola , Alcaloides/farmacologia , Antivirais/química , Sulfato de Dextrana , Ebolavirus/metabolismo , Glicoproteínas , Doença pelo Vírus Ebola/tratamento farmacológico , Heparina/farmacologia , Humanos , SARS-CoV-2 , Internalização do Vírus
6.
Viruses ; 15(1)2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36680070

RESUMO

Reverse transcriptase (RT) and integrase (IN) are encoded tandemly in the pol genes of retroviruses. We reported recently that HIV-1 RT and IN need to be supplied as the pol precursor intermediates, in which RT and IN are in fusion form (RTIN) to exert efficient reverse transcription in the context of HIV-1 replication. The mechanism underlying RTIN's effect, however, remains to be elucidated. In this study, we examined the effect of IN fusion on RT during reverse transcription by an in vitro cell-free assay, using recombinant HIV-1 RTIN (rRTIN). We found that, compared to recombinant RT (rRT), rRTIN generated significantly higher cDNAs under physiological concentrations of dNTPs (less than 10 µM), suggesting increased affinity of RTIN to dNTPs. Importantly, the cleavage of RTIN with HIV-1 protease reduced cDNA levels at a low dose of dNTPs. Similarly, sensitivities against RT inhibitors were significantly altered in RTIN form. Finally, analysis of molecular dynamics simulations of RT and RTIN suggested that IN can influence the structural dynamics of the RT active center and the inhibitor binding pockets in cis. Thus, we demonstrated, for the first time, the cis-allosteric regulatory roles of IN in RT structure and enzymatic activity.


Assuntos
Integrase de HIV , Transcriptase Reversa do HIV , Regulação Alostérica , Transcriptase Reversa do HIV/genética , Transcriptase Reversa do HIV/metabolismo , Inibidores da Transcriptase Reversa/farmacologia , Integrase de HIV/metabolismo
7.
J Mol Biol ; 434(2): 167390, 2022 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-34883117

RESUMO

Plasma-membrane-specific localization of Gag, an essential step in HIV-1 particle assembly, is regulated by the interaction of the Gag MA domain with PI(4,5)P2 and tRNA-mediated inhibition of non-specific or premature membrane binding. Different tRNAs inhibit PI(4,5)P2-independent membrane binding to varying degrees in vitro; however, the structural determinants for this difference remain unknown. Here we demonstrate that membrane binding of full-length Gag synthesized in vitro using reticulocyte lysates is inhibited when RNAs that contain the anticodon arm of tRNAPro, but not that of tRNALys3, are added exogenously. In contrast, in the context of a liposome binding assay in which the effects of tRNAs on purified MA were tested, full-length tRNALys3 showed greater inhibition of MA membrane binding than full-length tRNAPro. While transplantation of the D loop sequence of tRNALys3 into tRNAPro resulted in a modest increase in the inhibitory effect relative to WT tRNAPro, replacing the entire D arm sequence with that of tRNALys3 was necessary to confer the full inhibitory effects upon tRNAPro. Together, these results demonstrate that the D arm of tRNALys3 is a major determinant of strong inhibition of MA membrane binding and that this inhibitory effect requires not only the D loop, which was recently reported to contact the MA highly basic region, but the loop sequence in the context of the D arm structure.


Assuntos
HIV-1/metabolismo , RNA de Transferência/química , RNA de Transferência/metabolismo , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Anticódon/metabolismo , Sítios de Ligação , Membrana Celular/metabolismo , HIV-1/genética , Humanos , Simulação de Acoplamento Molecular , Fosfatidilinositol 4,5-Difosfato , Domínios e Motivos de Interação entre Proteínas , RNA Viral/genética , Montagem de Vírus/fisiologia
8.
Viruses ; 13(9)2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34578314

RESUMO

The stalk domain of influenza virus envelope glycoprotein hemagglutinin (HA) constitutes the axis connecting the head and transmembrane domains, and plays pivotal roles in conformational rearrangements of HA for virus infection. Here we characterized molecular interactions between the anti-HA stalk neutralization antibody F11 and influenza A(H1N1)pdm09 HA to understand the structural basis of the actions and modifications of this antibody. In silico structural analyses using a model of the trimeric HA ectodomain indicated that the F11 Fab fragment has physicochemical properties, allowing it to crosslink two HA monomers by binding to a region near the proteolytic cleavage site of the stalk domain. Interestingly, the F11 binding allosterically caused a marked suppression of the structural dynamics of the HA cleavage loop and flanking regions. Structure-guided mutagenesis of the F11 antibody revealed a critical residue in the F11 light chain for the F11-mediated neutralization. Finally, the mutagenesis led to identification of a unique F11 derivative that can neutralize both F11-sensitive and F11-resistant A(H1N1)pdm09 viruses. These results raise the possibility that F11 sterically and physically disturbs proteolytic cleavage of HA for the ordered conformational rearrangements and suggest that in silico guiding experiments can be useful to create anti-HA stalk antibodies with new phenotypes.


Assuntos
Anticorpos Antivirais/imunologia , Hemaglutininas/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A/imunologia , Animais , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes , Anticorpos Antivirais/genética , Cães , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Hemaglutininas/genética , Humanos , Fragmentos Fab das Imunoglobulinas , Influenza Humana/virologia , Células Madin Darby de Rim Canino , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida
9.
Int J Mol Sci ; 22(7)2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33810482

RESUMO

Human immunodeficiency virus type 1 (HIV-1) uptakes homo-dimerized viral RNA genome into its own particle. A cis-acting viral RNA segment responsible for this event, termed packaging signal (psi), is located at the 5'-end of the viral genome. Although the psi segment exhibits nucleotide variation in nature, its effects on the psi function largely remain unknown. Here we show that a psi sequence from an HIV-1 regional variant, subtype D, has a lower packaging ability compared with that from another regional variant, HIV-1 subtype B, despite maintaining similar genome dimerization activities. A series of molecular genetic investigations narrowed down the responsible element of the selective attenuation to the two sequential nucleotides at positions 226 and 227 in the psi segment. Molecular dynamics simulations predicted that the dinucleotide substitution alters structural dynamics, fold, and hydrogen-bond networks primarily of the psi-SL2 element that contains the binding interface of viral nucleocapsid protein for the genome packaging. In contrast, such structural changes were minimal within the SL1 element involved in genome dimerization. These results suggest that the psi 226/227 dinucleotide pair functions as a cis-acting regulator to control the psi structure to selectively tune the efficiency of packaging, but not dimerization of highly variable HIV-1 genomes.


Assuntos
Genoma Viral , HIV-1 , Nucleotídeos/genética , RNA Viral/metabolismo , Dimerização , Variação Genética , Células HEK293 , Humanos , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Proteínas do Nucleocapsídeo/genética , Ligação Proteica , Dobramento de Proteína , Transfecção , Montagem de Vírus/genética
10.
J Virol ; 95(13): e0217720, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-33883222

RESUMO

Molecular interactions of the variable envelope gp120 subunit of HIV-1 with two cellular receptors are the first step of viral infection, thereby playing pivotal roles in determining viral infectivity and cell tropism. However, the underlying regulatory mechanisms for interactions under gp120 spontaneous variations largely remain unknown. Here, we show an allosteric mechanism in which a single gp120 mutation remotely controls the ternary interactions between gp120 and its receptors for the switch of viral cell tropism. Virological analyses showed that a G310R substitution at the tip of the gp120 V3 loop selectively abolished the viral replication ability in human cells, despite evoking enhancement of viral replication in macaque cells. Molecular dynamics (MD) simulations predicted that the G310R substitution at a site away from the CD4 interaction site selectively impeded the binding ability of gp120 to human CD4. Consistently, virions with the G310R substitution exhibited a reduced binding ability to human lymphocyte cells. Furthermore, the G310R substitution influenced the gp120-CCR5 interaction in a CCR5-type dependent manner as assessed by MD simulations and an infectivity assay using exogenously expressed CCR5s. Interestingly, an I198M mutation in human CCR5 restored the infectivity of the G310R virus in human cells. Finally, MD simulation predicted amino acid interplays that physically connect the V3 loop and gp120 elements for the CD4 and CCR5 interactions. Collectively, these results suggest that the V3 loop tip is a cis-allosteric regulator that remotely controls intra- and intermolecular interactions of HIV-1 gp120 for balancing ternary interactions with CD4 and CCR5. IMPORTANCE Understanding the molecular bases for viral entry into cells will lead to the elucidation of one of the major viral survival strategies, and thus to the development of new effective antiviral measures. As shown recently, HIV-1 is highly mutable and adaptable in growth-restrictive cells, such as those of macaque origin. HIV-1 initiates its infection by sequential interactions of Env-gp120 with two cell surface receptors, CD4 and CCR5. A recent epoch-making structural study has disclosed that CD4-induced conformation of gp120 is stabilized upon binding of CCR5 to the CD4-gp120 complex, whereas the biological significance of this remains totally unknown. Here, from a series of mutations found in our extensive studies, we identified a single-amino acid adaptive mutation at the V3 loop tip of Env-gp120 critical for its interaction with both CD4 and CCR5 in a host cell species-specific way. This remarkable finding could certainly provoke and accelerate studies to precisely clarify the HIV-1 entry mechanism.


Assuntos
Proteína gp120 do Envelope de HIV/genética , Proteína gp120 do Envelope de HIV/metabolismo , HIV-1/genética , Receptores Virais/metabolismo , Tropismo Viral/genética , Substituição de Aminoácidos/genética , Animais , Antígenos CD4/metabolismo , Linhagem Celular , Células HEK293 , HIV-1/patogenicidade , Células HeLa , Humanos , Linfócitos/virologia , Macaca fascicularis , Simulação de Dinâmica Molecular , Receptores CCR5/metabolismo , Especificidade da Espécie
11.
Biomolecules ; 11(2)2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546092

RESUMO

The capsid of human immunodeficiency virus type 1 (HIV-1) is a shell that encloses viral RNA and is highly conserved among many strains of the virus. It forms a conical structure by assembling oligomers of capsid (CA) proteins. CA dysfunction is expected to be an important target of suppression of HIV-1 replication, and it is important to understand a new mechanism that could lead to the CA dysfunction. A drug targeting CA however, has not been developed to date. Hydrophobic interactions between two CA molecules via Trp184/Met185 in CA were recently reported to be important for stabilization of the multimeric structure of CA. In the present study, a small molecule designed by in silico screening as a dipeptide mimic of Trp184 and Met185 in the interaction site, was synthesized and its significant anti-HIV-1 activity was confirmed. Structure activity relationship (SAR) studies of its derivatives were performed and provided results that are expected to be useful in the future design and development of novel anti-HIV agents targeting CA.


Assuntos
Fármacos Anti-HIV/farmacologia , Proteínas do Capsídeo/química , HIV-1/metabolismo , Fármacos Anti-HIV/síntese química , Sítios de Ligação , Capsídeo/química , Química Farmacêutica , Cromatografia Líquida de Alta Pressão , Simulação por Computador , Dimerização , Desenho de Fármacos , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Peptídeos/química , Permeabilidade , Estereoisomerismo , Relação Estrutura-Atividade , Replicação Viral/efeitos dos fármacos
12.
PLoS One ; 16(1): e0245244, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33412571

RESUMO

IgA antibodies, which are secreted onto the mucosal surface as secretory IgA antibodies (SIgAs), play an important role in preventing influenza virus infection. A recent study reported that anti-hemagglutinin (HA) head-targeting antibodies increase anti-viral functions such as hemagglutination inhibition (HI) and virus neutralization (NT), in addition to HA binding activity (reactivity) via IgA polymerization. However, the functional properties of anti-viral IgA antibodies with mechanisms of action distinct from those of anti-HA head-targeting antibodies remain elusive. Here, we characterized the functional properties of IgG, monomeric IgA, and polymeric IgA anti-HA stalk-binding clones F11 and FI6, and B12 (a low affinity anti-HA stalk clone), as well as Fab-deficient (ΔFab) IgA antibodies. We found that IgA polymerization impacts the functional properties of anti-HA stalk antibodies. Unlike anti-HA head antibodies, the anti-viral functions of anti-HA stalk antibodies were not simply enhanced by IgA polymerization. The data suggest that two modes of binding (Fab paratope-mediated binding to the HA stalk, and IgA Fc glycan-mediated binding to the HA receptor binding site (RBS)) occur during interaction between anti-stalk HA IgA antibodies and HA. In situations where Fab paratope-mediated binding to the HA stalk exceeded IgA Fc glycan-mediated binding to HA RBS, IgA polymerization increased anti-viral functions. By contrast, when IgA Fc glycan-mediated binding to the HA RBS was dominant, anti-viral activity will fall upon IgA polymerization. In summary, the results suggest that coordination between these two independent binding modules determines whether IgA polymerization has a negative or positive effect on the anti-viral functions of anti-HA stalk IgA antibodies.


Assuntos
Hemaglutininas , Imunoglobulina A , Vacinas contra Influenza , Influenza Humana , Animais , Cães , Feminino , Humanos , Camundongos , Anticorpos Antivirais/química , Anticorpos Antivirais/imunologia , Afinidade de Anticorpos , Sítios de Ligação de Anticorpos , Células Cultivadas , Células HEK293 , Hemaglutininas/química , Hemaglutininas/imunologia , Imunogenicidade da Vacina , Imunoglobulina A/química , Imunoglobulina A/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Células Madin Darby de Rim Canino , Camundongos Endogâmicos BALB C
13.
J Neuropathol Exp Neurol ; 79(2): 209-225, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31845989

RESUMO

Coxsackievirus B (CVB) causes severe morbidity and mortality in neonates and is sometimes associated with severe brain damage resulting from acute severe viral encephalomyelitis. However, the neuropathology of CVB infection remains unclear. A prototype strain of coxsackievirus B2 (Ohio-1) induces brain lesions in neonatal mice, resulting in dome-shaped heads, ventriculomegaly, and loss of the cerebral cortex. Here, we characterized the glial pathology in this mouse model. Magnetic resonance imaging revealed an absence of the cerebral cortex within 2 weeks after inoculation. Histopathology showed that virus replication triggered activation of microglia and astrocytes, and induced apoptosis in the cortex, with severe necrosis and lateral ventricular dilation. In contrast, the brainstem and cerebellum remained morphologically intact. Immunohistochemistry revealed high expression of the coxsackievirus and adenovirus receptor (a primary receptor for CVB) in mature neurons of the cortex, hippocampus, thalamus, and midbrain, demonstrating CVB2 infection of mature neurons in these areas. However, apoptosis and neuroinflammation from activated microglia and astrocytes differed in thalamic and cortical areas. Viral antigens were retained in the brains of animals in the convalescence phase with seroconversion. This animal model will contribute to a better understanding of the neuropathology of CVB infection.


Assuntos
Encéfalo/patologia , Encéfalo/virologia , Infecções por Coxsackievirus/patologia , Enterovirus Humano B/fisiologia , Neuroglia/patologia , Neuroglia/virologia , Animais , Animais Recém-Nascidos , Apoptose , Encéfalo/metabolismo , Modelos Animais de Doenças , Encefalite Infecciosa/metabolismo , Encefalite Infecciosa/patologia , Encefalite Infecciosa/virologia , Camundongos , Receptores Virais/metabolismo
14.
J Virol ; 93(17)2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31189701

RESUMO

The retroviral Gag capsid (Gag-CA) interdomain linker is an unstructured peptide segment connecting structured N-terminal and C-terminal domains. Although the region is reported to play roles in virion morphogenesis and infectivity, underlying molecular mechanisms remain unexplored. To address this issue, we determined biological and molecular phenotypes of HIV-1 CA linker mutants by experimental and in silico approaches. Among the nine linker mutants tested, eight exhibited attenuation of viral particle production to various extents mostly in parallel with a reduction in viral infectivity. Sucrose density gradient, confocal microscopy, and live-cell protein interaction analyses indicated that the defect is accompanied by attenuation of Gag-Gag interactions following Gag plasma membrane targeting in the cells. In silico analyses revealed distinct distributions of interaction-prone hydrophobic patches between immature and mature CA proteins. Molecular dynamics simulations predicted that the linker mutations can allosterically alter structural fluctuations, including the interaction surfaces apart from the mutation sites in both the immature and mature CA proteins. These results suggest that the HIV-1 CA interdomain linker is a cis-modulator of the CA interaction surfaces to optimize efficiency of Gag assembly, virion production, and viral infectivity.IMPORTANCE HIV-1 particle production and infection are highly ordered processes. Viral Gag proteins play a central role in the assembly and disassembly of viral molecules. Of these, capsid protein (CA) is a major contributor to the Gag-Gag interactions. CA consists of two structured domains, i.e., N-terminal (NTD) and C-terminal (CTD) domains, connected by an unstructured domain named the interdomain linker. While multiple regions in the NTD and CTD are reported to play roles in virion morphogenesis and infectivity, the roles of the linker region in Gag assembly and virus particle formation remain elusive. In this study, we showed by biological and molecular analyses that the linker region functions as an intramolecular modulator to tune Gag assembly, virion production, and viral infectivity. Our study thus illustrates a hitherto-unrecognized mechanism, an allosteric regulation of CA structure by the disordered protein element, for HIV-1 replication.


Assuntos
Capsídeo/metabolismo , HIV-1/fisiologia , Mutação , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Regulação Alostérica , Capsídeo/química , Simulação por Computador , HIV-1/genética , Células HeLa , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação Proteica , Domínios Proteicos , Montagem de Vírus , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética
15.
Front Microbiol ; 10: 2, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30705669

RESUMO

HIV-1 Env protein functions in the entry process and is the target of neutralizing antibodies. Its intrinsically high mutation rate is certainly one of driving forces for persistence/survival in hosts. For optimal replication in various environments, HIV-1 Env must continue to adapt and evolve through balancing sometimes incompatible function, replication fitness, and neutralization sensitivity. We have previously reported that adapted viruses emerge in repeated and prolonged cultures of cells originally infected with a macaque-tropic HIV-1NL4-3 derivative. We have also shown that the adapted viral clones exhibit enhanced growth potentials both in macaque PBMCs and individuals, and that three single-amino acid mutations are present in their Env V1/C2/C4 domains. In this study, we investigated how lab-adapted and highly neutralization-sensitive HIV-1NL4-3 adapts its Env to macaque cells with strongly replication-restrictive nature for HIV-1. While a single and two mutations gave a significantly enhanced replication phenotype in a macaque cell line and also in human cell lines that stably express either human CD4 or macaque CD4, the virus simultaneously carrying the three adaptive mutations always grew best. Entry kinetics of parental and triple mutant viruses were similar, whereas the mutant was significantly more readily inhibited for its infectivity by soluble CD4 than parental virus. Furthermore, molecular dynamics simulations of the Env ectodomain (gp120 and gp41 ectodomain) bound with CD4 suggest that the three mutations increase binding affinity of Env for CD4 in solution. Thus, it is quite likely that the affinity for CD4 of the mutant Env is enhanced relative to the parental Env. Neutralization sensitivity of the triple mutant to CD4 binding site antibodies was not significantly different from that of parental virus, whereas the mutant exhibited a considerably higher resistance against neutralization by a CD4-induced epitope antibody and Env trimer-targeting V1/V2 antibodies. These results suggest that the three adaptive mutations cooperatively promote viral growth via increased CD4 affinity, and also that they enhance viral resistance to several neutralization antibodies by changing the Env-trimer conformation. In total, we have verified here an HIV-1 adaptation pathway in host cells and individuals involving Env derived from a lab-adapted and highly neutralization-sensitive clone.

16.
J Virol ; 93(6)2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30626685

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) infection can manifest as a mild illness, acute respiratory distress, organ failure, or death. Several animal models have been established to study disease pathogenesis and to develop vaccines and therapeutic agents. Here, we developed transgenic (Tg) mice on a C57BL/6 background; these mice expressed human CD26/dipeptidyl peptidase 4 (hDPP4), a functional receptor for MERS-CoV, under the control of an endogenous hDPP4 promoter. We then characterized this mouse model of MERS-CoV. The expression profile of hDPP4 in these mice was almost equivalent to that in human tissues, including kidney and lung; however, hDPP4 was overexpressed in murine CD3-positive cells within peripheral blood and lymphoid tissues. Intranasal inoculation of young and adult Tg mice with MERS-CoV led to infection of the lower respiratory tract and pathological evidence of acute multifocal interstitial pneumonia within 7 days, with only transient loss of body weight. However, the immunopathology in young and adult Tg mice was different. On day 5 or 7 postinoculation, lungs of adult Tg mice contained higher levels of proinflammatory cytokines and chemokines associated with migration of macrophages. These results suggest that the immunopathology of MERS-CoV infection in the Tg mouse is age dependent. The mouse model described here will increase our understanding of disease pathogenesis and host mediators that protect against MERS-CoV infection.IMPORTANCE Middle East respiratory syndrome coronavirus (MERS-CoV) infections are endemic in the Middle East and a threat to public health worldwide. Rodents are not susceptible to the virus because they do not express functional receptors; therefore, we generated a new animal model of MERS-CoV infection based on transgenic mice expressing human DPP4 (hDPP4). The pattern of hDPP4 expression in this model was similar to that in human tissues (except lymphoid tissue). In addition, MERS-CoV was limited to the respiratory tract. Here, we focused on host factors involved in immunopathology in MERS-CoV infection and clarified differences in antiviral immune responses between young and adult transgenic mice. This new small-animal model could contribute to more in-depth study of the pathology of MERS-CoV infection and aid development of suitable treatments.


Assuntos
Infecções por Coronavirus/metabolismo , Dipeptidil Peptidase 4/metabolismo , Pulmão/virologia , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , Animais , Linhagem Celular , Chlorocebus aethiops , Infecções por Coronavirus/virologia , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Macrófagos/metabolismo , Macrófagos/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Infecções Respiratórias/metabolismo , Infecções Respiratórias/virologia , Células Vero
17.
J Virol ; 92(15)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29848582

RESUMO

Enterovirus 71 (EV71) is a causative agent of hand, foot, and mouth disease and sometimes causes severe or fatal neurological complications. The amino acid at VP1-145 determines the virological characteristics of EV71. Viruses with glutamic acid (E) at VP1-145 (VP1-145E) are virulent in neonatal mice and transgenic mice expressing human scavenger receptor B2, whereas those with glutamine (Q) or glycine (G) are not. However, the contribution of this variation to pathogenesis in humans is not fully understood. We compared the virulence of VP1-145E and VP1-145G viruses of Isehara and C7/Osaka backgrounds in cynomolgus monkeys. VP1-145E, but not VP1-145G, viruses induced neurological symptoms. VP1-145E viruses were frequently detected in the tissues of infected monkeys. VP1-145G viruses were detected less frequently and disappeared quickly. Instead, mutants that had a G-to-E mutation at VP1-145 emerged, suggesting that VP1-145E viruses have a replication advantage in the monkeys. This is consistent with our hypothesis proposed in the accompanying paper (K. Kobayashi, Y. Sudaka, A. Takashino, A. Imura, K. Fujii, and S. Koike, J Virol 92:e00681-18, 2018, https://doi.org/10.1128/JVI.00681-18) that the VP1-145G virus is attenuated due to its adsorption by heparan sulfate. Monkeys infected with both viruses produced neutralizing antibodies before the onset of the disease. Interestingly, VP1-145E viruses were more resistant to neutralizing antibodies than VP1-145G viruses in vitro A small amount of neutralizing antibody raised in the early phase of infection may not be sufficient to block the dissemination of VP1-145E viruses. The different resistance of the VP1-145 variants to neutralizing antibodies may be one of the reasons for the difference in virulence.IMPORTANCE The contribution of VP1-145 variants in humans is not fully understood. In some studies, VP1-145G/Q viruses were isolated more frequently from severely affected patients than from mildly affected patients, suggesting that VP1-145G/Q viruses are more virulent. In the accompanying paper (K. Kobayashi, Y. Sudaka, A. Takashino, A. Imura, K. Fujii, and S. Koike, J Virol 92:e00681-18, 2018, https://doi.org/10.1128/JVI.00681-18), we showed that VP1-145E viruses are more virulent than VP1-145G viruses in human SCARB2 transgenic mice. Heparan sulfate acts as a decoy to specifically trap the VP1-145G viruses and leads to abortive infection. Here, we demonstrated that VP1-145G was attenuated in cynomolgus monkeys, suggesting that this hypothesis is also true in a nonhuman primate model. VP1-145E viruses, but not VP1-145G viruses, were highly resistant to neutralizing antibodies. We propose the difference in resistance against neutralizing antibodies as another mechanism of EV71 virulence. In summary, VP1-145 contributes to virulence determination by controlling attachment receptor usage and antibody sensitivity.


Assuntos
Substituição de Aminoácidos , Anticorpos Neutralizantes/metabolismo , Proteínas do Capsídeo/genética , Enterovirus Humano A/patogenicidade , Infecções por Enterovirus/veterinária , Macaca fascicularis/imunologia , Animais , Anticorpos Antivirais/metabolismo , Células COS , Chlorocebus aethiops , Enterovirus Humano A/genética , Enterovirus Humano A/imunologia , Infecções por Enterovirus/imunologia , Infecções por Enterovirus/virologia , Heparitina Sulfato/metabolismo , Macaca fascicularis/virologia , Masculino , Células Vero , Virulência
18.
Virology ; 507: 32-39, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28399435

RESUMO

An anti-influenza compound, DP2392-E10 based on inhibition of the nuclear export function of the viral nucleoprotein-nuclear export signal 3 (NP-NES3) domain was successfully identified by our previous high-throughput screening system. Here, we demonstrated that DP2392-E10 exerts its antiviral effect by inhibiting replication of a broad range of influenza A subtypes. In regard to the molecular mechanism, we revealed that DP2392-E10 inhibits nuclear export of both viral NP and nuclear export protein (NEP). More specifically, in vitro pull-down assays revealed that DP2392-E10 directly binds cellular CRM1, which mediates nuclear export of NP and NEP. In silico docking suggested that DP2392-E10 binds at a region close to the HEAT9 and HEAT10 domains of CRM1. Together, these results indicate that the CRM1-mediated nuclear export function of influenza virus represents a new potential target for antiviral drug development, and also provide a core structure for a novel class of inhibitors that target this function.


Assuntos
Vírus da Influenza A/metabolismo , Influenza Humana/metabolismo , Carioferinas/metabolismo , Nucleoproteínas/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Antivirais/farmacologia , Linhagem Celular , Núcleo Celular/metabolismo , Núcleo Celular/virologia , Humanos , Vírus da Influenza A/genética , Influenza Humana/virologia , Carioferinas/antagonistas & inibidores , Carioferinas/genética , Nucleoproteínas/genética , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/genética , Proteína Exportina 1
19.
J Virol ; 90(21): 10007-10021, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27581974

RESUMO

Saffold virus (SAFV), a human cardiovirus, is occasionally detected in infants with neurological disorders, including meningitis and cerebellitis. We recently reported that SAFV type 3 isolates infect cerebellar glial cells, but not large neurons, in mice. However, the impact of this infection remained unclear. Here, we determined the neuropathogenesis of SAFV type 3 in the cerebella of neonatal ddY mice by using SAFV passaged in the cerebella of neonatal BALB/c mice. The virus titer in the cerebellum increased following the inoculation of each of five passaged strains. The fifth passaged strain harbored amino acid substitutions in the VP2 (H160R and Q239R) and VP3 (K62M) capsid proteins. Molecular modeling of the capsid proteins suggested that the VP2-H160R and VP3-K62M mutations alter the structural dynamics of the receptor binding surface via the formation of a novel hydrophobic interaction between the VP2 puff B and VP3 knob regions. Compared with the original strain, the passaged strain showed altered growth characteristics in human-derived astroglial cell lines and greater replication in the brains of neonatal mice. In addition, the passaged strain was more neurovirulent than the original strain, while both strains infected astroglial and neural progenitor cells in the mouse brain. Intracerebral inoculation of either the original or the passaged strain affected brain Purkinje cell dendrites, and a high titer of the passaged strain induced cerebellar hypoplasia in neonatal mice. Thus, infection by mouse-passaged SAFV affected cerebellar development in neonatal mice. This animal model contributes to the understanding of the neuropathogenicity of SAFV infections in infants. IMPORTANCE Saffold virus (SAFV) is a candidate neuropathogenic agent in infants and children, but the neuropathogenicity of the virus has not been fully elucidated. Recently, we evaluated the pathogenicity of two clinical SAFV isolates in mice. Similar to other neurotropic picornaviruses, these isolates showed mild infectivity of glial and neural progenitor cells, but not of large neurons, in the cerebellum. However, the outcome of this viral infection in the cerebellum has not been clarified. Here, we examined the tropism of SAFV in the cerebellum. We obtained an in vivo-passaged strain from the cerebella of neonatal mice and examined its genome and its neurovirulence in the neonatal mouse brain. The passaged virus showed high infectivity and neurovirulence in the brain, especially the cerebellum, and affected cerebellar development. This unique neonatal mouse model will be helpful for elucidating the neuropathogenesis of SAFV infections occurring early in life.

20.
PLoS One ; 11(2): e0148184, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26828718

RESUMO

OBJECTIVE: Saffold virus (SAFV), a picornavirus, is occasionally detected in children with acute flaccid paralysis, meningitis, and cerebellitis; however, the neuropathogenicity of SAFV remains undetermined. METHODS: The virulence of two clinical isolates of SAFV type 3 (SAFV-3) obtained from a patient with aseptic meningitis (AM strain) and acute upper respiratory inflammation (UR strain) was analyzed in neonatal and young mice utilizing virological, pathological, and immunological methods. RESULTS: The polyproteins of the strains differed in eight amino acids. Both clinical isolates were infective, exhibited neurotropism, and were mildly neurovirulent in neonatal ddY mice. Both strains pathologically infected neural progenitor cells and glial cells, but not large neurons, with the UR strain also infecting epithelial cells. UR infection resulted in longer inflammation in the brain and spinal cord because of demyelination, while the AM strain showed more infectivity in the cerebellum in neonatal ddY mice. Additionally, young BALB/c mice seroconverted following mucosal inoculation with the UR, but not the AM, strain. CONCLUSIONS: Both SAFV-3 isolates had neurotropism and mild neurovirulence but showed different cell tropisms in both neonatal and young mouse models. This animal model has the potential to recapitulate the potential neuropathogenicity of SAFV-3.


Assuntos
Encéfalo/patologia , Encéfalo/virologia , Infecções por Cardiovirus/virologia , Cardiovirus/isolamento & purificação , Cardiovirus/patogenicidade , Sequência de Aminoácidos , Animais , Animais Recém-Nascidos , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Antígenos Virais/imunologia , Peso Corporal , Cardiovirus/imunologia , Infecções por Cardiovirus/genética , Infecções por Cardiovirus/imunologia , Infecções por Cardiovirus/patologia , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Progressão da Doença , Feminino , Imunidade , Inflamação/patologia , Injeções Intraventriculares , Interferon Tipo I/metabolismo , Camundongos Endogâmicos BALB C , Mucosa/patologia , Mucosa/virologia , Reação em Cadeia da Polimerase em Tempo Real , Tropismo , Virulência , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA