Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomech Eng ; 146(8)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38530647

RESUMO

Articular cartilage (AC) is a load-bearing tissue that covers long bones in synovial joints. The biphasic/poroelastic mechanical properties of AC help it to protect joints by distributing loads, absorbing impact forces, and reducing friction. Unfortunately, alterations in these mechanical properties adversely impact cartilage function and precede joint degeneration in the form of osteoarthritis (OA). Thus, understanding what factors regulate the poroelastic mechanical properties of cartilage is of great scientific and clinical interest. Transgenic mouse models provide a valuable platform to delineate how specific genes contribute to cartilage mechanical properties. However, the poroelastic mechanical properties of murine articular cartilage are challenging to measure due to its small size (thickness ∼ 50 microns). In the current study, our objective was to test whether the poroelastic mechanical properties of murine articular cartilage can be determined based solely on time-dependent cell death measurements under constant loading conditions. We hypothesized that in murine articular cartilage subjected to constant, sub-impact loading from an incongruent surface, cell death area and tissue strain are closely correlated. We further hypothesized that the relationship between cell death area and tissue strain can be used-in combination with inverse finite element modeling-to compute poroelastic mechanical properties. To test these hypotheses, murine cartilage-on-bone explants from different anatomical locations were subjected to constant loading conditions by an incongruent surface in a custom device. Cell death area increased over time and scaled linearly with strain, which rose in magnitude over time due to poroelastic creep. Thus, we were able to infer tissue strain from cell death area measurements. Moreover, using tissue strain values inferred from cell death area measurements, we applied an inverse finite element modeling procedure to compute poroelastic material properties and acquired data consistent with previous studies. Collectively, our findings demonstrate in the key role poroelastic creep plays in mediating cell survival in mechanically loaded cartilage and verify that cell death area can be used as a surrogate measure of tissue strain that enables determination of murine cartilage mechanical properties.


Assuntos
Cartilagem Articular , Osteoartrite , Animais , Camundongos , Condrócitos/fisiologia , Estresse Mecânico , Cartilagem Articular/fisiologia , Morte Celular
2.
Front Bioeng Biotechnol ; 11: 1244975, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37731766

RESUMO

Introduction: A massive rotator cuff tear (RCT) leads to glenohumeral joint destabilization and characteristic degenerative changes, termed cuff tear arthropathy (CTA). Understanding the response of articular cartilage to a massive RCT will elucidate opportunities to promote homeostasis following restoration of joint biomechanics with rotator cuff repair. Mechanically activated calcium-permeating channels, in part, modulate the response of distal femoral chondrocytes in the knee against injurious loading and inflammation. The objective of this study was to investigate PIEZO1-mediated mechanotransduction of glenohumeral articular chondrocytes in the altered biomechanical environment following RCT to ultimately identify potential therapeutic targets to attenuate cartilage degeneration after rotator cuff repair. Methods: First, we quantified mechanical susceptibility of chondrocytes in mouse humeral head cartilage ex vivo with treatments of specific chemical agonists targeting PIEZO1 and TRPV4 channels. Second, using a massive RCT mouse model, chondrocytes were assessed for mechano-vulnerability, PIEZO1 expression, and calcium signaling activity 14-week post-injury, an early stage of CTA. Results: In native humeral head chondrocytes, chemical activation of PIEZO1 (Yoda1) significantly increased chondrocyte mechanical susceptibility against impact loads, while TRPV4 activation (GSK101) significantly decreased impact-induced chondrocyte death. A massive RCT caused morphologic and histologic changes to the glenohumeral joint with decreased sphericity and characteristic bone bruising of the posterior superior quadrant of the humeral head. At early CTA, chondrocytes in RCT limbs exhibit a significantly decreased functional expression of PIEZO1 compared with uninjured or sham controls. Discussion: In contrast to the hypothesis, PIEZO1 expression and activity is not increased, but rather downregulated, after massive RCT at the early stage of cuff tear arthropathy. These results may be secondary to the decreased axial loading after glenohumeral joint decoupling in RCT limbs.

3.
Osteoarthr Cartil Open ; 4(1): 100227, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36474470

RESUMO

Objective: The objective of this study is to understand the role of altered in vivo mechanical environments in knee joints post anterior cruciate ligament (ACL)-injury in chondrocyte vulnerability against mechanical stimuli and in the progression of post-traumatic osteoarthritis (PT-OA). Methods: Differential in vivo mechanical environments were induced by unilateral ACL-injury (uni-ACL-I) and bilateral ACL-injury (bi-ACL-I) in 8-week-old female C57BL/6 mice. The gait parameters, the mechano-vulnerability of in situ chondrocytes, Young's moduli of cartilage extracellular matrix (ECM), and the histological assessment of OA severity (OARSI score) were compared between control and experimental groups at 0∼8-weeks post-ACL-injury. Results: We found that bi-ACL-I mice experience higher joint-loading on their both injured limbs, but uni-ACL-I mice balance their joint-loading between injured and uninjured hind limbs resulting in a reduced joint-loading during gait. We also found that at 4- and 8-week post-injury the higher weight-bearing hind limbs (i.e., bi-ACL-I) had the increased area of chondrocyte death induced by impact loading and higher OARSI score than the lower weight-bearing limbs (uni-ACL-I). Additionally, we found that at 8-weeks post-injury the ECM became stiffer in bi-ACL-I joints and softer in uni-ACL-I joints. Conclusions: Our results show that ACL-injured limbs with lower in vivo joint-loading develops PT-OA significantly slower than injured limbs with higher joint-loading during gait. Our data also indicate that articular chondrocytes in severe PT-OA are more fragile from mechanical impacts than chondrocytes in healthy or mild PT-OA. Thus, preserving physiologic joint-loads on injured joints will reduce chondrocyte death post-injury and may delay PT-OA progression.

4.
ACS Biomater Sci Eng ; 8(8): 3568-3575, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35793542

RESUMO

Cell and tissue alignment is a defining feature of periodontal tissues. Therefore, the development of scaffolds that can guide alignment of periodontal ligament cells (PDLCs) relative to tooth root (dentin) surfaces is highly relevant for periodontal tissue engineering. To control PDLC alignment adjacent to the dentin surface, poly(ethylene glycol) (PEG)-based hydrogels were explored as a highly tunable matrix for encapsulating cells and directing their activity. Specifically, a composite system consisting of dentin blocks, PEG hydrogels, and PDLCs was created to control PDLC alignment through hydrogel swelling. PDLCs in composites with minimal hydrogel swelling showed random alignment adjacent to dentin blocks. In direct contrast, the presence of hydrogel swelling resulted in PDLC alignment perpendicular to the dentin surface, with the degree and extension of alignment increasing as a function of swelling. Replicating this phenomenon with different molds, block materials, and cells, together with predictive modeling, indicated that PDLC alignment was primarily a biomechanical response to swelling-mediated strain. Altogether, this study describes a novel method for inducing cell alignment adjacent to stiff surfaces through applied strain and provides a model for the study and engineering of periodontal and other aligned tissues.


Assuntos
Hidrogéis , Ligamento Periodontal , Dentina , Hidrogéis/farmacologia , Polietilenoglicóis/farmacologia , Engenharia Tecidual
5.
Aging Cell ; 19(11): e13255, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33112509

RESUMO

Osteoarthritis (OA) is the most prevalent disabling disease, affecting quality of life and contributing to morbidity, particularly during aging. Current treatments for OA are limited to palliation: pain management and surgery for end-stage disease. Innovative approaches and animal models are needed to develop curative treatments for OA. Here, we investigated the naked mole-rat (NMR) as a potential model of OA resistance. NMR is a small rodent with the maximum lifespan of over 30 years, resistant to a wide range of age-related diseases. NMR tissues accumulate large quantities of unique, very high molecular weight, hyaluronan (HA). HA is a major component of cartilage and synovial fluid. Importantly, both HA molecular weight and cartilage stiffness decline with age and progression of OA. As increased polymer length is known to result in stiffer material, we hypothesized that NMR high molecular weight HA contributes to stiffer cartilage. Our analysis of biomechanical properties of NMR cartilage revealed that it is significantly stiffer than mouse cartilage. Furthermore, NMR chondrocytes were highly resistant to traumatic damage. In vivo experiments using an injury-induced model of OA revealed that NMRs were highly resistant to OA. While similarly treated mice developed severe cartilage degeneration, NMRs did not show any signs of OA. Our study shows that NMRs are remarkably resistant to OA, and this resistance is likely conferred by high molecular weight HA. This work suggests that NMR is a useful model to study OA resistance and NMR high molecular weight HA may hold therapeutic potential for OA treatment.


Assuntos
Osteoartrite/fisiopatologia , Animais , Modelos Animais de Doenças , Ratos-Toupeira
6.
Connect Tissue Res ; 61(3-4): 360-374, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31937149

RESUMO

Chondrocytes, the resident cells in articular cartilage, carry the burden of producing and maintaining the extracellular matrix (ECM). However, as these cells have a low proliferative capacity and are not readily replaced, chondrocyte death due to extreme forces may contribute to the pathogenesis of osteoarthritis (OA) after injury or may inhibit healing after osteochondral transplantation, a restorative procedure for damaged cartilage that requires a series of mechanical impacts to insert the graft. Consequently, there is a need to understand what factors influence the vulnerability of in situ chondrocytes to mechanical trauma. To this end, the objective of this study was to investigate how altering cell volume by different means (hydrostatic pressure, uniaxial load, and osmotic challenge with and without inhibition of regulatory volume decrease) affects the vulnerability of in situ chondrocytes to extreme mechanical forces. Using a custom experimental platform enabling testing of viable and intact murine cartilage-on-bone explants, we established a strong correlation between chondrocyte volume and vulnerability to impact injury wherein reduced volume was protective. Moreover, we found that the volume-perturbing interventions did not affect cartilage ECM mechanical properties, suggesting that their effects on chondrocyte vulnerability occurred at the cellular level. The findings of this study offer new avenues for novel strategies aimed at preventing chondrocyte loss during osteochondral grafting or to halting the progression of cell death after a joint destabilizing injury.


Assuntos
Tamanho Celular , Condrócitos , Matriz Extracelular , Meniscos Tibiais , Lesões do Menisco Tibial , Animais , Condrócitos/metabolismo , Condrócitos/patologia , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Feminino , Meniscos Tibiais/metabolismo , Meniscos Tibiais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Lesões do Menisco Tibial/metabolismo , Lesões do Menisco Tibial/patologia
7.
J Vis Exp ; (143)2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30663676

RESUMO

Homeostasis of articular cartilage depends on the viability of resident cells (chondrocytes). Unfortunately, mechanical trauma can induce widespread chondrocyte death, potentially leading to irreversible breakdown of the joint and the onset of osteoarthritis. Additionally, maintenance of chondrocyte viability is important in osteochondral graft procedures for optimal surgical outcomes. We present a method to assess the spatial extent of cell injury/death on the articular surface of intact murine synovial joints after application of controlled mechanical loads or impacts. This method can be used in comparative studies to investigate the effects of different mechanical loading regimens, different environmental conditions or genetic manipulations, as well as different stages of cartilage degeneration on short- and/or long-term vulnerability of in situ articular chondrocytes. The goal of the protocol introduced in the manuscript is to assess the spatial extent of cell injury/death on the articular surface of murine synovial joints. Importantly, this method enables testing on fully intact cartilage without compromising native boundary conditions. Moreover, it allows for real-time visualization of vitally stained articular chondrocytes and single image-based analysis of cell injury induced by application of controlled static and impact loading regimens. Our representative results demonstrate that in healthy cartilage explants, the spatial extent of cell injury depends sensitively on load magnitude and impact intensity. Our method can be easily adapted to investigate the effects of different mechanical loading regimens, different environmental conditions or different genetic manipulations on the mechanical vulnerability of in situ articular chondrocytes.


Assuntos
Condrócitos/citologia , Animais , Cartilagem Articular/citologia , Morte Celular , Camundongos , Osteoartrite/metabolismo , Estresse Mecânico
8.
J Biomech Eng ; 140(1)2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29049670

RESUMO

With the onset and progression of osteoarthritis (OA), articular cartilage (AC) mechanical properties are altered. These alterations can serve as an objective measure of tissue degradation. Although the mouse is a common and useful animal model for studying OA, it is extremely challenging to measure the mechanical properties of murine AC due to its small size (thickness < 50 µm). In this study, we developed novel and direct approach to independently quantify two quasi-static mechanical properties of mouse AC: the load-dependent (nonlinear) solid matrix Young's modulus (E) and drained Poisson's ratio (ν). The technique involves confocal microscope-based multiaxial strain mapping of compressed, intact murine AC followed by inverse finite element analysis (iFEA) to determine E and ν. Importantly, this approach yields estimates of E and ν that are independent of the initial guesses used for iterative optimization. As a proof of concept, mechanical properties of AC on the medial femoral condyles of wild-type mice were obtained for both trypsin-treated and control specimens. After proteolytic tissue degradation induced through trypsin treatment, a dramatic decrease in E was observed (compared to controls) at each of the three tested loading conditions. A significant decrease in ν due to trypsin digestion was also detected. These data indicate that the method developed in this study may serve as a valuable tool for comparative studies evaluating factors involved in OA pathogenesis using experimentally induced mouse OA models.


Assuntos
Cartilagem Articular , Módulo de Elasticidade , Dinâmica não Linear , Animais , Fenômenos Biomecânicos , Cartilagem Articular/metabolismo , Feminino , Glicosaminoglicanos/metabolismo , Teste de Materiais , Camundongos , Camundongos Endogâmicos BALB C , Tripsina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...