Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Colloid Interface Sci ; 312: 102843, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36709574

RESUMO

The paper deals with relationships between the individual transmembrane fluxes of binary electrolyte solution components and the experimentally measurable quantities describing rates of transfer processes, namely, the electric current, the transmembrane volume flow and the rates of concentration changes in the solutions adjacent to the membrane. Also, we collected and rigorously defined the kinetic coefficients describing the membrane selective and electrokinetic properties. A set of useful relationships between these coefficients is derived. An important specificity of the proposed analysis is that it does not use the Irreversible Thermodynamic approach by analyzing no thermodynamic forces that generate the fluxes under consideration. Instead, all the regularities are derived on the basis of conservation and linearity reasons. The terminology "Kinematics of Fluxes" is proposed for such an analysis on the basis of the analogy with Mechanics where Kinematics deals with regularities of motion by considering no mechanic forces. The only thermodynamic steps of the analysis relate to the discussion on the partial molar volumes of electrolyte and ions that are the equilibrium thermodynamic parameters of the adjacent solutions. These parameters are important for interrelating the transmembrane fluxes of the solution components and the transmembrane volume flow. The paper contains short literature reviews concerned with the partial molar volumes of electrolyte and ions: the methods of measurement, the obtained results and their theoretical interpretations. It is concluded from the reviews that the classical theories should be corrected to make them applicable for sufficiently concentrated solutions, 1 M or higher. The proposed correction is taken into account in the kinematic analysis.

2.
Int J Mol Sci ; 23(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35163480

RESUMO

We report a new structure of {[Co(bpy)2(ox)][{Cu2(bpy)2(ox)}Fe(ox)3]}n·8.5nH2O NCU-1 presenting a rare ladder topology among oxalate-based coordination polymers with anionic chains composed of alternately arranged [Cu2(bpy)2(ox)]2+ and [Fe(ox)3]3- moieties. Along the a axis, they are separated by Co(III) units to give porous material with voids of 963.7 Å3 (16.9% of cell volume). The stability of this structure is assured by a network of stacking interactions and charge-assisted C-H…O hydrogen bonds formed between adjacent chains, adjacent cobalt(III) units, and alternately arranged cobalt(III) and chain motifs. The soaking experiment with acetonitrile and bromobenzene showed that water molecules (8.5 water molecules dispersed over 15 positions) are bonded tightly, despite partial occupancy. Water adsorption experiments are described by a D'arcy and Watt model being the sum of Langmuir and Dubinin-Serpinski isotherms. The amount of primary adsorption sites calculated from this model is equal 8.2 mol H2O/mol, being very close to the value obtained from the XRD experiments and indicates that water was adsorbed mainly on the primary sites. The antiferromagnetic properties could be only approximately described with the simple CuII-ox-CuII dimer using H = -J·S1·S2, thus, considering non-trivial topology of the whole Cu-Fe chain, we developed our own general approach, based on the semiclassical model (SC) and molecular field (MF) model, to describe precisely the magnetic superexchange interactions in NCU-1. We established that Cu(II)-Cu(II) coupling dominates over multiple Cu(II)-Fe(III) interactions, with JCuCu = -275(29) and JCuFe = -3.8(1.6) cm-1 and discussed the obtained values against the literature data.


Assuntos
Fenômenos Magnéticos , Metais/química , Oxalatos/química , Adsorção , Cristalização , Dimerização , Ligação de Hidrogênio , Modelos Moleculares , Conformação Molecular , Espectrofotometria Infravermelho , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Água/química , Espectroscopia por Absorção de Raios X
3.
ACS Appl Mater Interfaces ; 13(43): 51628-51642, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34677930

RESUMO

Defects are widely present in nanomaterials, and they are recognized as the active sites that tune surface properties in the local region for catalysis. Recently, the theory linking defect structures and catalytic properties of nanocatalysts has been most commonly described. In this study, we prepared boron-doped carbon nano-onions (B-CNOs) by applying an annealing treatment of ultradispersed nanodiamond particles and amorphous boron. These experimental conditions guarantee doping of CNOs with boron atoms in the entire carbon nanostructure, thereby ensuring structural homogeneity. In our research, we discuss the correlations between defective structures of B-CNOs with their catalytic properties toward SO2 and tert-butanol dehydration. We show that there is a close relationship between the catalytic properties of the B-CNOs and the experimental conditions for their formation. It is not only the mass of the substrates used for the formation of B-CNOs that is crucial, that is, the mass ratio of NDs to amorphous B, but also the process, including temperature and gas atmosphere. As it was expected, all B-CNOs demonstrated significant catalytic activity in HSO3- oxidation. However, the subsequent annealing in an air atmosphere diminished their catalytic activity. Unfortunately, no direct relationship between the catalytic activity and the presence of heteroatoms on the B-CNO surface was observed. There was a linear dependence between catalytic activity and Raman reactivity factors for each of the B-CNO materials. In contrast to SO2 oxidation, the B-CNO-a samples showed higher catalytic activity in tert-butanol dehydration due to the presence of Brønsted and Lewis acid sites. The occurence of three types of boron-Lewis sites differing in electron donor properties was confirmed using quantitative infrared spectroscopic measurements of pyridine adsorption.

4.
ACS Appl Mater Interfaces ; 13(31): 37893-37903, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34319693

RESUMO

Wetting of metal surfaces plays an important role in fuel cells, corrosion science, and heat-transfer devices. It has been recently stipulated that Cu surface is hydrophobic. In order to address this issue we use high purity (1 1 1) Cu prepared without oxygen, and resistant to oxidation. Using the modern Fringe Projection Phase-Shifting method of surface roughness determination, together with a new cell allowing the vacuum and thermal desorption of samples, we define the relation between the copper surface roughness and water contact angle (WCA). Next by a simple extrapolation, we determine the WCA for the perfectly smooth copper surface (WCA = 34°). Additionally, the kinetics of airborne hydrocarbons adsorption on copper was measured. It is shown for the first time that the presence of surface hydrocarbons strongly affects not only WCA, but also water droplet evaporation and the temperature of water droplet freezing. The different behavior and features of the surfaces were observed once the atmosphere of the experiment was changed from argon to air. The evaporation results are well described by the theoretical framework proposed by Semenov, and the freezing process by the dynamic growth angle model.

5.
Membranes (Basel) ; 12(1)2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-35054559

RESUMO

The study explores the grafting of cellulose acetate microfiltration membranes with an aminosilane to attain antibiofilm properties. The grafting reaction was performed in the supercritical carbon dioxide used as a transport and reaction medium. The FTIR analyses and dissolution tests confirmed the covalent bonding between the aminosilane and polymer. The membranes' microstructure was investigated using a dual-beam SEM and ion microscopy, and no adverse effects of the processing were found. The modified membranes showed a more hydrophilic nature and larger water permeate flow rate than the neat cellulose acetate membranes. The tests in a cross-filtration unit showed that modified membranes were considerably less blocked after a week of exposure to Staphylococcus aureus and Escherichia coli than the original ones. Microbiological investigations revealed strong antibiofilm properties of the grafted membranes in experiments with Staphylococcus aureus, Listeria monocytogenes, Escherichia coli, and Salmonella Enteritidis.

6.
Int J Mol Sci ; 21(17)2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32878293

RESUMO

Reverse electrodialysis (RED) is an electro-membrane process for the conversion of mixing energy into electricity. One important problem researchers' face when modeling the RED process is the choice of the proper membrane transport equations. In this study, using experimental data that describe the membrane Nafion 120 in contact with NaCl aqueous solutions, the linear transport equation of irreversible thermodynamics was applied to calculate the power density of the RED system. Various simplifying assumptions about transport equation (i.e., four-, three-, and two-coefficients approaches) are proposed and discussed. We found that the two-coefficients approach, using the membrane conductivity and the apparent transport number of ions, describes the power density with good accuracy. In addition, the influence of the membrane thickness and the concentration polarization on the power density is also demonstrated.


Assuntos
Condutividade Elétrica , Eletrólise/métodos , Membranas Artificiais , Cloreto de Sódio/metabolismo , Termodinâmica , Transporte de Íons
7.
RSC Adv ; 10(63): 38357-38368, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35517569

RESUMO

We investigated the electrochemical performance of single-walled carbon nanohorns (SWCNHs) for use as supercapacitor electrodes. For the first time, we used acid-treatment for oxidation of SWCNHs and hole creation in their structure. A detailed study was performed on the correlation between the oxidation of SWCNHs via acid treatment and variable acid treatment times, the structural properties of the oxidized carbon nanostructures, and the specific capacitance of the SWCNH electrodes. We showed that simple functionalization of carbon nanostructures under controlled conditions leads to an almost 3-fold increase in their specific capacitance (from 65 to 180 F g-1 in 0.1 M H2SO4). This phenomenon indicates higher accessibility of the surface area of the electrodes by electrolyte ions as a result of gradual opening of the SWCNH internal channels.

8.
Bioresour Technol ; 270: 643-655, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30213541

RESUMO

This review article focuses on an assessment of the innovative Gas Separation Membrane Bioreactor (GS-MBR), which is an emerging technology because of its potential for in-situ biohydrogen production and separation. The GS-MBR, as a special membrane bioreactor, enriches CO2 directly from the headspace of the anaerobic H2 fermentation process. CO2 can be fed as a substrate to auxiliary photo-bioreactors to grow microalgae as a promising raw material for biocatalyzed, dark fermentative H2-evolution. Overall, these features make the GS-MBR worthy of study. To the best of the authors' knowledge, the GS-MBR has not been studied in detail to date; hence, a comprehensive review of this topic will be useful to the scientific community.


Assuntos
Reatores Biológicos , Hidrogênio/metabolismo , Fermentação , Gases , Membranas Artificiais
9.
Phys Chem Chem Phys ; 17(11): 7232-47, 2015 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-25689966

RESUMO

The GCMC technique is used for simulation of adsorption of CO2-CH4, CO2-N2 and CH4-N2 mixtures (at 298 K) on six porous carbon models. Next we formulate a new condition of the IAS concept application, showing that our simulated data obey this condition. Calculated deviations between IAS predictions and simulation results increase with the rise in pressure as in the real experiment. For the weakly adsorbed mixture component the deviation from IAS predictions is higher, especially when its content in the gas mixture is low, and this is in agreement with the experimental data. Calculated activity coefficients have similar plots to deviations between IAS and simulations, moreover obtained from simulated data activity coefficients are similar qualitatively as well as quantitatively to experimental data. Since the physical interpretation of activity coefficients is completely lacking we show for the first time that they can be described by the formulas derived from the expression for G(ex) for the ternary mixture. Finally we also for the first time show the linear relationship between the chemical potentials of nonideal and ideal solutions and the reduced temperature of interacting mixture components, and it is proved that the deviation from ideality is larger if adsorption occurs in a more microporous system.

10.
ACS Appl Mater Interfaces ; 6(16): 14223-30, 2014 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-25084346

RESUMO

Hydrophobic titania ceramic membranes (300 kD) were prepared by grafting of C6F13C2H4Si(OC2H5)3 and C12F25C2H4Si(OC2H5)3 molecules and thus applied in membrane distillation (MD) process of NaCl solutions. Grafting efficiency and hydrophobicity were evaluated by contact angle measurement, atomic force microscopy, scanning electron microscopy, nitrogen adsorption/desorption, and liquid entry pressure measurement of water. Desalination of NaCl solutions was performed using the modified hydrophobic membranes in air gap MD (AGMD) and direct contact MD (DCMD) processes in various operating conditions. High values of NaCl retention coefficient (>99%) were reached. The permeate fluxes were in the range 231-3692 g·h(-1)·m(-2), depending on applied experimental conditions. AGMD mode appeared to be more efficient showing higher fluxes and selectivity in desalination. Overall mass transfer coefficients (K) for membranes tested in AGMD were constant over the investigated temperature range. However, K values in DCMD increased at elevated temperature. The hydrophobic layer was also stable after 4 years of exposure to open air.

11.
J Phys Condens Matter ; 25(1): 015004, 2013 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-23220791

RESUMO

Tetrafluoromethane, CF(4), is a powerful greenhouse gas, and the possibility of storing it in microporous carbon has been widely studied. In this paper we show, for the first time, that the results of molecular simulations can be very helpful in the study of CF(4) adsorption. Moreover, experimental data fit to the results collected from simulations. We explain the meaning of the empirical parameters of the supercritical Dubinin-Astakhov model proposed by Ozawa and finally the meaning of the parameter k of the empirical relation proposed by Amankwah and Schwarz.


Assuntos
Carbono/química , Efeito Estufa , Hidrocarbonetos Fluorados/química , Modelos Químicos , Modelos Moleculares , Simulação de Dinâmica Molecular , Adsorção , Simulação por Computador
12.
J Colloid Interface Sci ; 282(2): 335-9, 2005 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-15589538

RESUMO

We present two approaches to description of the adsorption equilibrium in adsorbate-adsorbent systems, the treatment where the adsorbate is considered as a two-dimensional gas, and the treatment where the adsorbate and adsorbent form a solution where the adsorbate is the solute and vacancies play the role of the solvent. In the first case the application of different equations describing the state of a two-dimensional gas leads to some fundamental adsorption isotherm equations, for example, Henry, Volmer, Hill-deBoer, Fowler-Guggenheim, and Langmuir. In contrast, the application of different equations (existing in the theory of solutions) describing the activity of the solvent (e.g., the Wilson model or the model of Flory and Huggins) leads to some new adsorption equations and the assumption of the ideality of the solvent leads to the Langmuir adsorption isotherm. We present some new adsorption equations basing on the second method described above and on the Redlich-Kister and Wohl expansions. Assuming that the activity coefficients are given by the one-constant Margules equation, the two-constant Margules equation, the van Laar equation, the Wilson equation, and, finally, the Flory-Huggins equation, we derive the respective adsorption isotherm formulas. We also present the assumptions leading to the best-known adsorption equations derived applying the first method. The equation developed by Cochran et al. is also corrected, taking into account the fundamental assumptions of the Flory-Huggins theory.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...