Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nature ; 632(8023): 166-173, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39020176

RESUMO

Gene expression in Arabidopsis is regulated by more than 1,900 transcription factors (TFs), which have been identified genome-wide by the presence of well-conserved DNA-binding domains. Activator TFs contain activation domains (ADs) that recruit coactivator complexes; however, for nearly all Arabidopsis TFs, we lack knowledge about the presence, location and transcriptional strength of their ADs1. To address this gap, here we use a yeast library approach to experimentally identify Arabidopsis ADs on a proteome-wide scale, and find that more than half of the Arabidopsis TFs contain an AD. We annotate 1,553 ADs, the vast majority of which are, to our knowledge, previously unknown. Using the dataset generated, we develop a neural network to accurately predict ADs and to identify sequence features that are necessary to recruit coactivator complexes. We uncover six distinct combinations of sequence features that result in activation activity, providing a framework to interrogate the subfunctionalization of ADs. Furthermore, we identify ADs in the ancient AUXIN RESPONSE FACTOR family of TFs, revealing that AD positioning is conserved in distinct clades. Our findings provide a deep resource for understanding transcriptional activation, a framework for examining function in intrinsically disordered regions and a predictive model of ADs.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Domínios Proteicos , Fatores de Transcrição , Ativação Transcricional , Arabidopsis/química , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/classificação , Proteínas de Arabidopsis/metabolismo , Sequência Conservada/genética , Conjuntos de Dados como Assunto , Regulação da Expressão Gênica de Plantas/genética , Ácidos Indolacéticos/metabolismo , Proteínas Intrinsicamente Desordenadas , Anotação de Sequência Molecular , Redes Neurais de Computação , Proteoma/química , Proteoma/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/classificação , Fatores de Transcrição/metabolismo , Ativação Transcricional/genética
2.
Curr Opin Struct Biol ; 84: 102732, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38056064

RESUMO

Eukaryotic transcription factors activate gene expression with their DNA-binding domains and activation domains. DNA-binding domains bind the genome by recognizing structurally related DNA sequences; they are structured, conserved, and predictable from protein sequences. Activation domains recruit chromatin modifiers, coactivator complexes, or basal transcriptional machinery via structurally diverse protein-protein interactions. Activation domains and DNA-binding domains have been called independent, modular units, but there are many departures from modularity, including interactions between these regions and overlap in function. Compared to DNA-binding domains, activation domains are poorly understood because they are poorly conserved, intrinsically disordered, and difficult to predict from protein sequences. This review, organized around commonly asked questions, describes recent progress that the field has made in understanding the sequence features that control activation domains and predicting them from sequence.


Assuntos
DNA , Fatores de Transcrição , Ativação Transcricional , Ligação Proteica , Fatores de Transcrição/metabolismo , Domínios Proteicos , DNA/metabolismo
3.
Genetics ; 225(2)2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37462277

RESUMO

Transcription factors activate gene expression in development, homeostasis, and stress with DNA binding domains and activation domains. Although there exist excellent computational models for predicting DNA binding domains from protein sequence, models for predicting activation domains from protein sequence have lagged, particularly in metazoans. We recently developed a simple and accurate predictor of acidic activation domains on human transcription factors. Here, we show how the accuracy of this human predictor arises from the clustering of aromatic, leucine, and acidic residues, which together are necessary for acidic activation domain function. When we combine our predictor with the predictions of convolutional neural network (CNN) models trained in yeast, the intersection is more accurate than individual models, emphasizing that each approach carries orthogonal information. We synthesize these findings into a new set of activation domain predictions on human transcription factors.


Assuntos
Proteínas de Ligação a DNA , Fatores de Transcrição , Humanos , Proteínas de Ligação a DNA/genética , Ativação Transcricional , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , DNA/metabolismo
4.
Cell Syst ; 13(4): 334-345.e5, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35120642

RESUMO

Acidic activation domains are intrinsically disordered regions of the transcription factors that bind coactivators. The intrinsic disorder and low evolutionary conservation of activation domains have made it difficult to identify the sequence features that control activity. To address this problem, we designed thousands of variants in seven acidic activation domains and measured their activities with a high-throughput assay in human cell culture. We found that strong activation domain activity requires a balance between the number of acidic residues and aromatic and leucine residues. These findings motivated a predictor of acidic activation domains that scans the human proteome for clusters of aromatic and leucine residues embedded in regions of high acidity. This predictor identifies known activation domains and accurately predicts previously unidentified ones. Our results support a flexible acidic exposure model of activation domains in which the acidic residues solubilize hydrophobic motifs so that they can interact with coactivators. A record of this paper's transparent peer review process is included in the supplemental information.


Assuntos
Proteínas de Ligação a DNA , Fatores de Transcrição , Sequência de Aminoácidos , Proteínas de Ligação a DNA/genética , Humanos , Leucina/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA