Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-29803685

RESUMO

Liposomes are used in commercial pharmaceutical formulations (PFs) and dietary supplements (DSs) as a carrier vehicle to protect the active ingredient from degradation and to increase the half-life of the injectable. Even as the commercialization of liposomal products has rapidly increased, characterization methodologies to evaluate physical and chemical properties of the liposomal products have not been well-established. Herein we develop rapid methodologies to evaluate chemical and selected physical properties of liposomal formulations. Chemical properties of liposomes are determined by their lipid composition. The lipid composition is evaluated by first screening of the lipids present in the sample using HPLC-ELSD followed by HPLC-MSMS analysis with high mass accuracy (<5 ppm), fragmentation pattern and lipid structure databases searching. Physical properties such as particle size and size distribution were investigated using Tunable Resistive Pulse Sensing (TRPS). The developed methods were used to analyze commercially available PFs and DSs. As results, PFs contain distinct number of lipids as indicated by the manufacture, but DSs were more complicated containing a large number of lipids belonging to different sub-classes. Commercially available liposomes have particles with wide size distribution based on size measurements performed by TRPS. The high mass accuracy as well as identification lipids using multiple fragment ions aided to accurately identify the lipids and differentiate them from other lipophilic molecules. The developed analytical methodologies were successfully adapted to measure the physiochemical properties of commercial liposomes.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Lipídeos , Lipossomos , Espectrometria de Massas/métodos , Lipídeos/análise , Lipídeos/química , Lipossomos/análise , Lipossomos/química , Tamanho da Partícula
2.
ACS Sens ; 2(9): 1319-1328, 2017 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-28812356

RESUMO

Sensing and characterization of water-soluble peptides is of critical importance in a wide variety of bioapplications. Single molecule nanopore spectrometry (SMNS) is based on the idea that one can use biological protein nanopores to resolve different sized molecules down to limits set by the blockade duration and noise. Previous work has shown that this enables discrimination between polyethylene glycol (PEG) molecules that differ by a single monomer unit. This paper describes efforts to extend SMNS to a variety of biologically relevant, water-soluble peptides. We describe the use of Au25(SG)18 clusters, previously shown to improve PEG detection, to increase the on- and off-rate of peptides to the pore. In addition, we study the role that fluctuations play in the single molecule nanopore spectrometry (SMNS) methodology and show that modifying solution conditions to increase peptide flexibility (via pH or chaotropic salt) leads to a nearly 2-fold reduction in the current blockade fluctuations and a corresponding narrowing of the peaks in the blockade distributions. Finally, a model is presented that connects the current blockade depths to the mass of the peptides, which shows that our enhanced SMNS detection improves the mass resolution of the nanopore sensor more than 2-fold for the largest cationic peptides studied.

3.
Analyst ; 140(22): 7718-25, 2015 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-26455860

RESUMO

Recent work described the use of thiolate-capped gold clusters (Au25(SG)18) with nanopore sensing to increase the residence time of polyethylene glycol (PEG) in an alpha hemolysin pore [Anal. Chem., 2014, 86, 11077]. It was shown that the residence time enhancement narrows the peaks in the PEG-induced current blockade distribution, thus increasing the resolving power of the single molecule nanopore spectrometry (SMNS) technique. Here, we further study the interaction between the cluster and PEG with the goal of optimizing the residence time enhancement for SMNS detection. Specifically, we report the voltage dependence of the enhancement effect and show that, under the conditions studied, the cluster-enhanced residence time is maximized at an applied transmembrane potential near 60 mV. Additionally, we show that the PEG residence time depends on the degree to which the cluster blocks current through the pore and that the PEG on-rate to the pore can be more accurately measured with a cluster in the pore. Finally, we develop a model that describes the cluster-induced shift of the PEG current blockade distribution. We use this model to characterize the interaction between the cluster and PEG and show that it scales linearly with the applied voltage as expected from the proposed enhancement mechanism.

4.
Anal Chem ; 86(22): 11077-85, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25343748

RESUMO

Nanopore sensing is a label-free method for characterizing water-soluble molecules. The ability to accurately identify and characterize an analyte depends on the residence time of the molecule within the pore. It is shown here that when a Au25(SG)18 metallic cluster is bound to an α-hemolysin (αHL) nanopore, the mean residence time of polyethylene glycol (PEG) within the pore is increased by over 1 order of magnitude. This leads to an increase in the range of detectable PEG sizes and improves the peak resolution within the PEG-induced current blockade distribution. A model describing the relationship between the analyte residence time and the width of the peaks in the current blockade distribution is included. Finally, evidence is presented that shows the Coulombic interaction between the charged analyte and cluster plays an important role in the residence time enhancement, which suggests the cluster-based approach could be used to increase the residence time of a wide variety of charged analyte molecules.

5.
J Am Chem Soc ; 136(45): 15865-8, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25345688

RESUMO

Atomically precise thiolate-protected noble metal molecular nanoparticles are a promising class of model nanomaterials for catalysis, optoelectronics, and the bottom-up assembly of true molecular crystals. However, these applications have not fully materialized due to a lack of ligand exchange strategies that add functionality, but preserve the properties of these remarkable particles. Here we present a method for the rapid (<30 s) and complete thiolate-for-thiolate exchange of the highly sought after silver molecular nanoparticle [Ag44(SR)30](-4). Only by using this method were we able to preserve the precise nature of the particles and simultaneously replace the native ligands with ligands containing a variety of functional groups. Crucially, as a result of our method we were able to process the particles into smooth thin films, paving the way for their integration into solution-processed devices.

6.
Front Mar Sci ; 12014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27785452

RESUMO

Sponges have generated significant interest as a source of bioactive and elaborate secondary metabolites that hold promise for the development of novel therapeutics for the control of an array of human diseases. However, research and development of marine natural products can often be hampered by the difficulty associated with obtaining a stable and sustainable production source. Herein we report the first successful characterization and utilization of the microbiome of a marine invertebrate to identify a sustainable production source for an important natural product scaffold. Through molecular-microbial community analysis, optimization of fermentation conditions and MALDI-MS imaging, we provide the first report of a sponge-associated bacterium (Micromonospora sp.) that produces the manzamine class of antimalarials from the Indo-Pacific sponge Acanthostrongylophora ingens (Thiele, 1899) (Class Demospongiae, Order Haplosclerida, Family Petrosiidae). These findings suggest that a general strategy of analysis of the macroorganism's microbiome could significantly transform the field of natural products drug discovery by gaining access to not only novel drug leads, but the potential for sustainable production sources and biosynthetic genes at the same time.

7.
Chem Commun (Camb) ; 50(69): 9895-8, 2014 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-25026982

RESUMO

Au137(SR)56, a nanomolecule with a precise number of metal atoms and ligands, was synthesized. The composition was confirmed by MALDI and ESI mass spectrometry using three unique ligands (-SCH2CH2Ph, -SC6H13, and -SC4H9) and nano-alloys with Ag and Pd. The electrocatalytic properties were tested for CO2 reduction.

8.
Nanoscale ; 6(2): 683-7, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24270979

RESUMO

A size-dependent transition from molecule-like to plasmonic behaviour is demonstrated in the case of water soluble Au:SG nanomolecules. This was achieved using PAGE separation of smaller and larger nanomolecules, resulting in an unprecedented 26 bands, in a wide-range from 10's to 1000's of Au-atoms. PAGE separation of larger plasmonic nanomolecules is demonstrated for the first time. High resolution ESI-MS, with isotopic resolution, of smaller nanoparticles is reported, including the first time report of Au43(SG)26. This report will aid in the fundamental understanding of size-dependent properties of nanomolecules. The synthetic procedure employs a green approach with non-toxic chemicals and processes. The water solubility, non-toxicity and biocompatibility will lead to applications in biomedicine.


Assuntos
Glutationa/química , Ouro/química , Nanopartículas Metálicas/química , Eletroforese em Gel de Poliacrilamida , Ressonância de Plasmônio de Superfície , Água/química
9.
Chem Commun (Camb) ; 49(92): 10850-2, 2013 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-24126802

RESUMO

Au144-xPdx(SR)60 alloy nanomolecules were synthesized and characterized by ESI mass spectrometry to atomic precision. The number of Pd atoms can be varied by changing the incoming metal ratio and plateaus at 7 Pd atoms. Based on the proposed 3-shell structure of Au144(SR)60, we hypothesize that the Pd atoms are selectively incorporated into the central Au12 icosahedral core.

10.
Nanoscale ; 5(24): 12082-5, 2013 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-24132473

RESUMO

High resolution ESI mass spectrometry of the "22 kDa" nanocluster reveals the presence of a mixture containing Au103(SR)45, Au104(SR)45, Au104(SR)46, and Au105(SR)46 nanoclusters, where R = -CH2CH2Ph. MALDI TOF MS data confirm the purity of the sample and a UV-vis spectrum shows minor features. Au102(SC6H5COOH)44, whose XRD crystal structure was recently reported, is not observed. This is due to ligand effects, because the 102 : 44 composition is produced using aromatic ligands. However, the 103-, 104- and 105-atom nanoclusters, protected by -SCH2CH2Ph and -SC6H13 ligands, are at or near 58 electron shell closing.

11.
J Colloid Interface Sci ; 392: 57-64, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23149108

RESUMO

To analyze the influence of silica surface modification and confined space effects on specific interactions of divalent and trivalent metal cations with surface functionalities, three different high surface area silicas with different pore size distributions were modified with the following organosilanes: 3-aminopropyltriethoxysilane, N-(2-aminoethyl)-3-aminopropyltriethoxysilane, 3-(trimethoxysilylpropyl)diethylenetriamine, N-(triethoxysilylpropyl)ethylenediaminetriacetic acid (EDTrA), and 3-(2,4-dinitrophenylamino)propyltriethoxysilane. The silicas were characterized by N(2) adsorption and reflectance FTIR spectroscopy before and after surface modification. N(2) adsorption and pore size distributions showed an increase in the pore width for all EDTrA-modified silicas, opposite to what occurred with the other organosilanes. Adsorption isotherms of Cd(II), Cr(III), Cu(II), and Sr(II) obtained from aqueous solutions were compared and analyzed by silica type, organosilane functional group, and metal adsorbed. Reflectance FTIR spectroscopy was used to probe the acetate functionality in EDTrA as a function of adsorbed metal content. A band shift to higher energy for Cr(III) on the wide pore silica studied indicated that the interaction with the acetate groups can be probed in this manner. In general, the wider pore distribution silica provided larger adsorption maxima, whereas the narrower pore distribution silica provided more favorable ΔG because of stronger binding of the cations. Cr(III) and Cu(II) exhibited larger adsorption maxima compared to Cd(II) and Sr(II), with the grafted organosilanes studied since the first cations have a greater charge/radius ratio than the second ones that provide a greater binding energy.


Assuntos
Metais Pesados/química , Dióxido de Silício/química , Poluentes Químicos da Água/química , Adsorção , Íons/química , Soluções , Propriedades de Superfície , Água/química
12.
Nanoscale ; 4(14): 4269-74, 2012 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-22706613

RESUMO

Intensely and broadly absorbing nanoparticles (IBANs) of silver protected by arylthiolates were recently synthesized and showed unique optical properties, yet question of their dispersity and their molecular formulas remained. Here IBANs are identified as a superatom complex with a molecular formula of Ag(44)(SR)(30)(4-) and an electron count of 18. This molecular character is shared by IBANs protected by 4-fluorothiophenol or 2-naphthalenethiol. The molecular formula and purity is determined by mass spectrometry and confirmed by sedimentation velocity-analytical ultracentrifugation. The data also give preliminary indications of a unique structure and environment for Ag(44)(SR)(30)(4-).

13.
Chem Commun (Camb) ; 48(38): 4630-2, 2012 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-22498833

RESUMO

Chiral gold clusters stabilised by enantiopure thiolates were prepared, size-selected and characterised by circular dichroism and mass spectrometry. The product distribution is found to be ligand dependent. Au(25) clusters protected with camphorthiol show clear resemblance of their chiroptical properties with their glutathionate analogue.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...