Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1383989, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38694800

RESUMO

We investigated antibiotic resistance pattern in clinical bacterial pathogens isolated from in-patients and out-patients, and compared it with non-clinical bacterial isolates. 475 bacterial strains isolated from patients were examined for antibiotic resistance. Staphylococcus spp. (148; 31.1%) were found to be the most prevalent, followed by Klebsiella pneumoniae (135; 28.4%), Escherichia coli (74; 15.5%), Pseudomonas aeruginosa (65; 13.6%), Enterobacter spp. (28; 5.8%), and Acinetobacter spp. (25; 5.2%). Drug-resistant bacteria isolated were extended spectrum-ß-lactamase K. pneumoniae (8.8%), E. coli (20%), metallo-ß-lactamase P. aeruginosa (14; 2.9%), erythromycin-inducing clindamycin resistant (7.4%), and methicillin-resistant Staphylococcus species (21.6%). Pathogens belonging to the Enterobacteriaceae family were observed to undergo directional selection developing resistance against antibiotics ciprofloxacin, piperacillin-tazobactam, cefepime, and cefuroxime. Pathogens in the surgical ward exhibited higher levels of antibiotic resistance, while non-clinical P. aeruginosa and K. pneumoniae strains were more antibiotic-susceptible. Our research assisted in identifying the drugs that can be used to control infections caused by antimicrobial resistant bacteria in the population and in monitoring the prevalence of drug-resistant bacterial pathogens.

2.
Sci Rep ; 14(1): 10525, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720057

RESUMO

The narrow zone of soil around the plant roots with maximum microbial activity termed as rhizosphere. Rhizospheric bacteria promote the plant growth directly or indirectly by providing the nutrients and producing antimicrobial compounds. In this study, the rhizospheric microbiota of peanut plants was characterized from different farms using an Illumina-based partial 16S rRNA gene sequencing to evaluate microbial diversity and identify the core microbiome through culture-independent (CI) approach. Further, all rhizospheric bacteria that could grow on various nutrient media were identified, and the diversity of those microbes through culture-dependent method (CD) was then directly compared with their CI counterparts. The microbial population profiles showed a significant correlation with organic carbon and concentration of phosphate, manganese, and potassium in the rhizospheric soil. Genera like Sphingomicrobium, Actinoplanes, Aureimonas _A, Chryseobacterium, members from Sphingomonadaceae, Burkholderiaceae, Pseudomonadaceae, Enterobacteriaceae family, and Bacilli class were found in the core microbiome of peanut plants. As expected, the current study demonstrated more bacterial diversity in the CI method. However, a higher number of sequence variants were exclusively present in the CD approach compared to the number of sequence variants shared between both approaches. These CD-exclusive variants belonged to organisms that are more typically found in soil. Overall, this study portrayed the changes in the rhizospheric microbiota of peanuts in different rhizospheric soil and environmental conditions and gave an idea about core microbiome of peanut plant and comparative bacterial diversity identified through both approaches.


Assuntos
Arachis , Bactérias , Metagenômica , Microbiota , RNA Ribossômico 16S , Rizosfera , Microbiologia do Solo , Arachis/microbiologia , Índia , Microbiota/genética , RNA Ribossômico 16S/genética , Metagenômica/métodos , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Fazendas , Raízes de Plantas/microbiologia , Filogenia , Metagenoma , Biodiversidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA