Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 44(22)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38548341

RESUMO

The neurovascular unit (NVU) includes multiple different cell types, including neurons, astrocytes, endothelial cells, and pericytes, which respond to insults on very different time or dose scales. We defined differential vulnerability among these cell types, using response to two different insults: oxygen-glucose deprivation (OGD) and thrombin-mediated cytotoxicity. We found that neurons are most vulnerable, followed by endothelial cells and astrocytes. After temporary focal cerebral ischemia in male rats, we found significantly more injured neurons, compared with astrocytes in the ischemic area, consistent with differential vulnerability in vivo. We sought to illustrate different and shared mechanisms across all cell types during response to insult. We found that gene expression profiles in response to OGD differed among the cell types, with a paucity of gene responses shared by all types. All cell types activated genes relating to autophagy, apoptosis, and necroptosis, but the specific genes differed. Astrocytes and endothelial cells also activated pathways connected to DNA repair and antiapoptosis. Taken together, the data support the concept of differential vulnerability in the NVU and suggest that different elements of the unit will evolve from salvageable to irretrievable on different time scales while residing in the same brain region and receiving the same (ischemic) blood flow. Future work will focus on the mechanisms of these differences. These data suggest future stroke therapy development should target different elements of the NVU differently.


Assuntos
Astrócitos , Células Endoteliais , Neurônios , Ratos Sprague-Dawley , Animais , Masculino , Ratos , Astrócitos/metabolismo , Astrócitos/patologia , Células Endoteliais/metabolismo , Neurônios/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Glucose/deficiência , Glucose/metabolismo , Isquemia Encefálica/patologia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/genética , Pericitos/metabolismo , Pericitos/patologia , Acoplamento Neurovascular/fisiologia
2.
Glia ; 68(2): 246-262, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31453648

RESUMO

Astrocytes protect neurons during cerebral injury through several postulated mechanisms. Recent therapeutic attention has focused on enhancing or augmenting the neuroprotective actions of astrocytes but in some instances astrocytes can assume a neurotoxic phenotype. The signaling mechanisms that drive astrocytes toward a protective versus toxic phenotype are not fully known but cell-cell signaling via proteases acting on cell-specific receptors underlies critical mechanistic steps in neurodevelopment and disease. The protease activated receptor (PAR), resides in multiple brain cell types, and most PARs are found on astrocytes. We asked whether neuron-generated thrombin constituted an important astrocyte activation signal because our previous studies have shown that neurons contain prothrombin gene and transcribed protein. We used neuron and astrocyte mono-cell cultures exposed to oxygen-glucose deprivation and a model of middle cerebral artery occlusion. We found that ischemic neurons secrete thrombin into culture media, which leads to astrocyte activation; such astrocyte activation can be reproduced with low doses of thrombin. Media from prothrombin-deficient neurons failed to activate astrocytes and adding thrombin to such media restored activation. Astrocytes lacking PAR1 did not respond to neuron-generated thrombin. Induced astrocyte activation was antagonized dose-dependently with thrombin inhibitors or PAR1 antagonists. Ischemia-induced astrocyte activation in vivo was inhibited after neuronal prothrombin knockout, resulting in larger strokes. Restoring prothrombin to neurons with a lentiviral gene vector restored astrocyte activation and reduced stroke damage. We conclude that neuron-generated thrombin, released during ischemia, acts via PAR1 and may cause astrocyte activation and paracrine neuroprotection.


Assuntos
Astrócitos/metabolismo , Isquemia Encefálica/metabolismo , Neurônios/metabolismo , Acidente Vascular Cerebral/etiologia , Animais , Encéfalo/metabolismo , Sobrevivência Celular/fisiologia , Camundongos , Neurogênese/fisiologia , Acidente Vascular Cerebral/metabolismo
3.
J Cereb Blood Flow Metab ; 39(9): 1693-1709, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30461327

RESUMO

Therapeutic hypothermia (TH) benefits survivors of cardiac arrest and neonatal hypoxic-ischemic injury and may benefit stroke patients. Large TH clinical trials, however, have shown mixed results. Given the substantial pre-clinical literature supporting TH, we explored possible mechanisms for clinical trial variability. Using a standard rodent stroke model (n = 20 per group), we found smaller infarctions after 2 h pre- or post-reperfusion TH compared to 4 h. To explore the mechanism of this discrepancy, we used primary cell cultures of rodent neurons, astrocytes, or endothelial cells subjected to oxygen-glucose deprivation (OGD). Then, cells were randomly assigned to 33℃, 35℃ or 37℃ for varying durations after varying delay times. Both 33 and 35℃ TH effectively preserved all cell types, although 33℃ was superior. Longer cooling durations overcame moderate delays to cooling initiation. In contrast, TH interfered with astrocyte paracrine protection of neurons in a temperature-dependent manner. These findings suggest that longer TH is needed to overcome delays to TH onset, but shorter TH durations may be superior to longer, perhaps due to suppression of astrocytic paracrine support of neurons during injury. We propose a scheme for optimizing TH after cerebral injury to stimulate further studies of cardiac arrest and stroke.


Assuntos
Astrócitos/patologia , Células Endoteliais/patologia , Hipotermia Induzida/métodos , Infarto da Artéria Cerebral Média/terapia , Neurônios/patologia , Animais , Astrócitos/metabolismo , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Isquemia Encefálica/terapia , Sobrevivência Celular , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Glucose/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Masculino , Neurônios/metabolismo , Oxigênio/metabolismo , Ratos Sprague-Dawley , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/terapia
4.
Indian J Radiol Imaging ; 27(2): 229-236, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28744085

RESUMO

OBJECTIVE: To evaluate the role of exponential apparent diffusion coefficient (ADC) as a tool for differentiating benign and malignant breast lesions. PATIENTS AND METHODS: This prospective observational study included 88 breast lesions in 77 patients (between 18 and 85 years of age) who underwent 3T breast magnetic resonance imaging (MRI) including diffusion-weighted imaging (DWI) using b-values of 0 and 800 s/mm2 before biopsy. Mean exponential ADC and ADC of benign and malignant lesions obtained from DWI were compared. Receiver operating characteristics (ROC) curve analysis was undertaken to identify any cut-off for exponential ADC and ADC to predict malignancy. P value of <0.05 was considered statistically significant. Histopathology was taken as the gold standard. RESULTS: According to histopathology, 65 lesions were malignant and 23 were benign. The mean ADC and exponential ADC values of malignant lesions were 0.9526 ± 0.203 × 10-3 mm2/s and 0.4774 ± 0.071, respectively, and for benign lesions were 1.48 ± 0.4903 × 10-3 mm2/s and 0.317 ± 0.1152, respectively. For both the parameters, differences were highly significant (P < 0.001). Cut-off value of ≤0.0011 mm2/s (P < 0.0001) for ADC provided 92.3% sensitivity and 73.9% specificity, whereas with an exponential ADC cut-off value of >0.4 (P < 0.0001) for malignant lesions, 93.9% sensitivity and 82.6% specificity was obtained. The performance of ADC and exponential ADC in distinguishing benign and malignant breast lesions based on respective cut-offs was comparable (P = 0.109). CONCLUSION: Exponential ADC can be used as a quantitative adjunct tool for characterizing breast lesions with comparable sensitivity and specificity as that of ADC.

5.
Biochem Biophys Res Commun ; 450(1): 124-8, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-24866239

RESUMO

Apolipoprotein E3 (apoE3) is an anti-atherogenic apolipoprotein with the ability to exist in lipid-free and lipoprotein-associated states. During atherosclerosis, its function in promoting cholesterol efflux from macrophages via the ATP-binding cassette transporter A1 (ABCA1) takes a prominent role, leading to generation of nascent high density lipoprotein (nHDL) particles. The objective of this study is to understand the conformation adopted by apoE3 in macrophage-generated nHDL using a fluorescence spectroscopic approach involving pyrene. Pyrene-labeled recombinant human apoE3 displayed a robust ability to stimulate ABCA1-mediated cholesterol efflux from cholesterol-loaded J774 macrophages (which do not express apoE), comparable to that elicited by unlabeled apoE3. The nHDL recovered from the conditioned medium revealed the presence of apoE3 by immunoblot analysis. A heterogeneous population of nHDL bearing exogenously added apoE3 was generated with particle size varying from ∼12 to ∼19 nm in diameter, corresponding to molecular mass of ∼450 to ∼700 kDa. The lipid: apoE3 ratio varied from ∼60:1 to 10:1. A significant extent of pyrene excimer emission was noted in nHDL, indicative of spatial proximity between Cys112 on neighboring apoE3 molecules similar to that noted in reconstituted HDL. Cross-linking analysis using Cys-specific cross-linkers revealed the predominant presence of dimers. Taken together the data indicate a double belt arrangement of apoE molecules on nHDL. A similar organization of the C-terminal tail of apoE on nHDL was noted when pyrene-apoEA277C(201-299) was used as the cholesterol acceptor. These studies open up the possibility of using exogenously labeled apoE3 to generate nHDL for structural and conformational analysis.


Assuntos
Apolipoproteína E3/química , Apolipoproteína E3/metabolismo , Lipoproteínas de Alta Densidade Pré-beta/química , Lipoproteínas de Alta Densidade Pré-beta/metabolismo , Macrófagos/metabolismo , Pirenos/química , Espectrometria de Fluorescência/métodos , Animais , Linhagem Celular , Humanos , Camundongos , Microscopia de Fluorescência/métodos , Conformação Proteica , Pirenos/metabolismo , Coloração e Rotulagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...