Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2310743, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38189562

RESUMO

An integrated design, modeling, and multi-material 3D printing platform for fabricating liquid crystal elastomer (LCE) lattices in both homogeneous and heterogeneous layouts with spatially programmable nematic director order and local composition is reported. Depending on their compositional topology, these lattices exhibit different reversible shape-morphing transformations upon cycling above and below their respective nematic-to-isotropic transition temperatures. Further, it is shown that there is good agreement between their experimentally observed deformation response and model predictions for all LCE lattice designs evaluated. Lastly, an inverse design model is established and the ability to print LCE lattices with the predicted deformation behavior is demonstrated. This work opens new avenues for creating architected LCE lattices that may find potential application in energy-dissipating structures, microfluidic pumping, mechanical logic, and soft robotics.

2.
Adv Mater ; 33(27): e2101814, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34057260

RESUMO

The programmable assembly of innervated LCE actuators (iLCEs) with prescribed contractile actuation, self-sensing, and closed loop control via core-shell 3D printing is reported. This extrusion-based direct ink writing method enables coaxial filamentary features composed of pure LM core surrounded by an LCE shell, whose director is aligned along the print path. Specifically, the thermal response of the iLCE fiber-type actuators is programmed, measured, and modeled during Joule heating, including quantifying the concomitant changes in fiber length and resistance that arise during simultaneous heating and self-sensing. Due to their reversible, high-energy actuation and their resistive feedback, it is also demonstrated that iLCEs can be regulated with closed loop control even when perturbed with large bias loads. Finally, iLCE architectures capable of programmed, self-sensing 3D shape change with closed loop control are fabricated.

3.
Adv Mater ; 32(1): e1905682, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31664754

RESUMO

3D printable and reconfigurable liquid crystal elastomers (LCEs) that reversibly shape-morph when cycled above and below their nematic-to-isotropic transition temperature (TNI ) are created, whose actuated shape can be locked-in via high-temperature UV exposure. By synthesizing LCE-based inks with light-triggerable dynamic bonds, printing can be harnessed to locally program their director alignment and UV light can be used to enable controlled network reconfiguration without requiring an imposed mechanical field. Using this integrated approach, 3D LCEs are constructed in both monolithic and heterogenous layouts that exhibit complex shape changes, and whose transformed shapes could be locked-in on demand.

4.
Proc Natl Acad Sci U S A ; 116(42): 20856-20862, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31578256

RESUMO

Shape-morphing structured materials have the ability to transform a range of applications. However, their design and fabrication remain challenging due to the difficulty of controlling the underlying metric tensor in space and time. Here, we exploit a combination of multiple materials, geometry, and 4-dimensional (4D) printing to create structured heterogeneous lattices that overcome this problem. Our printable inks are composed of elastomeric matrices with tunable cross-link density and anisotropic filler that enable precise control of their elastic modulus (E) and coefficient of thermal expansion [Formula: see text] The inks are printed in the form of lattices with curved bilayer ribs whose geometry is individually programmed to achieve local control over the metric tensor. For independent control of extrinsic curvature, we created multiplexed bilayer ribs composed of 4 materials, which enables us to encode a wide range of 3-dimensional (3D) shape changes in response to temperature. As exemplars, we designed and printed planar lattices that morph into frequency-shifting antennae and a human face, demonstrating functionality and geometric complexity, respectively. Our inverse geometric design and multimaterial 4D printing method can be readily extended to other stimuli-responsive materials and different 2-dimensional (2D) and 3D cell designs to create scalable, reversible, shape-shifting structures with unprecedented complexity.

5.
Sci Robot ; 4(33)2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-33137783

RESUMO

There is growing interest in creating untethered soft robotic matter that can repeatedly shape-morph and self-propel in response to external stimuli. Toward this goal, we printed soft robotic matter composed of liquid crystal elastomer (LCE) bilayers with orthogonal director alignment and different nematic-to-isotropic transition temperatures (T NI) to form active hinges that interconnect polymeric tiles. When heated above their respective actuation temperatures, the printed LCE hinges exhibit a large, reversible bending response. Their actuation response is programmed by varying their chemistry and printed architecture. Through an integrated design and additive manufacturing approach, we created passively controlled, untethered soft robotic matter that adopts task-specific configurations on demand, including a self-twisting origami polyhedron that exhibits three stable configurations and a "rollbot" that assembles into a pentagonal prism and self-rolls in programmed responses to thermal stimuli.

6.
Adv Mater ; 30(10)2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29334165

RESUMO

Liquid crystal elastomers (LCEs) are soft materials capable of large, reversible shape changes, which may find potential application as artificial muscles, soft robots, and dynamic functional architectures. Here, the design and additive manufacturing of LCE actuators (LCEAs) with spatially programed nematic order that exhibit large, reversible, and repeatable contraction with high specific work capacity are reported. First, a photopolymerizable, solvent-free, main-chain LCE ink is created via aza-Michael addition with the appropriate viscoelastic properties for 3D printing. Next, high operating temperature direct ink writing of LCE inks is used to align their mesogen domains along the direction of the print path. To demonstrate the power of this additive manufacturing approach, shape-morphing LCEA architectures are fabricated, which undergo reversible planar-to-3D and 3D-to-3D' transformations on demand, that can lift significantly more weight than other LCEAs reported to date.

7.
Adv Mater ; 29(40)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28875572

RESUMO

Hybrid 3D printing is a new method for producing soft electronics that combines direct ink writing of conductive and dielectric elastomeric materials with automated pick-and-place of surface mount electronic components within an integrated additive manufacturing platform. Using this approach, insulating matrix and conductive electrode inks are directly printed in specific layouts. Passive and active electrical components are then integrated to produce the desired electronic circuitry by using an empty nozzle (in vacuum-on mode) to pick up individual components, place them onto the substrate, and then deposit them (in vacuum-off mode) in the desired location. The components are then interconnected via printed conductive traces to yield soft electronic devices that may find potential application in wearable electronics, soft robotics, and biomedical devices.

8.
Nat Mater ; 16(3): 303-308, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27775708

RESUMO

Biomedical research has relied on animal studies and conventional cell cultures for decades. Recently, microphysiological systems (MPS), also known as organs-on-chips, that recapitulate the structure and function of native tissues in vitro, have emerged as a promising alternative. However, current MPS typically lack integrated sensors and their fabrication requires multi-step lithographic processes. Here, we introduce a facile route for fabricating a new class of instrumented cardiac microphysiological devices via multimaterial three-dimensional (3D) printing. Specifically, we designed six functional inks, based on piezo-resistive, high-conductance, and biocompatible soft materials that enable integration of soft strain gauge sensors within micro-architectures that guide the self-assembly of physio-mimetic laminar cardiac tissues. We validated that these embedded sensors provide non-invasive, electronic readouts of tissue contractile stresses inside cell incubator environments. We further applied these devices to study drug responses, as well as the contractile development of human stem cell-derived laminar cardiac tissues over four weeks.


Assuntos
Miocárdio/citologia , Impressão Tridimensional/instrumentação , Análise Serial de Tecidos/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...