Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Health ; 11: 75, 2012 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-23039312

RESUMO

BACKGROUND: Particulate matter air pollution has been associated with adverse health effects. The fraction of ambient particles that are mainly responsible for the observed health effects is still a matter of controversy. Better characterization of the health relevant particle fraction will have major implications for air quality policy since it will determine which sources should be controlled.The RUPIOH study, an EU-funded multicentre study, was designed to examine the distribution of various ambient particle metrics in four European cities (Amsterdam, Athens, Birmingham, Helsinki) and assess their health effects in participants with asthma or COPD, based on a detailed exposure assessment. In this paper the association of central site measurements with respiratory symptoms and restriction of activities is examined. METHODS: At each centre a panel of participants with either asthma or COPD recorded respiratory symptoms and restriction of activities in a diary for six months. Exposure assessment included simultaneous measurements of coarse, fine and ultrafine particles at a central site. Data on gaseous pollutants were also collected. The associations of the 24-hour average concentrations of air pollution indices with the health outcomes were assessed in a hierarchical modelling approach. A city specific analysis controlling for potential confounders was followed by a meta-analysis to provide overall effect estimates. RESULTS: A 10 µg/m3 increase in previous day coarse particles concentrations was positively associated with most symptoms (an increase of 0.6 to 0.7% in average) and limitation in walking (OR= 1.076, 95% CI: 1.026-1.128). Same day, previous day and previous two days ozone concentrations were positively associated with cough (OR= 1.061, 95% CI: 1.013-1.111; OR= 1.049, 95% CI: 1.016-1.083 and OR= 1.059, 95% CI: 1.027-1.091, respectively). No consistent associations were observed between fine particle concentrations, nitrogen dioxide and respiratory health effects. As for particle number concentrations negative association (mostly non-significant at the nominal level) was observed with most symptoms whilst the positive association with limitation of activities did not reach the nominal level of significance. CONCLUSIONS: The observed associations with coarse particles are in agreement with the findings of toxicological studies. Together they suggest it is prudent to regulate also coarse particles in addition to fine particles.


Assuntos
Poluição do Ar/efeitos adversos , Asma/induzido quimicamente , Material Particulado/toxicidade , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente , Transtornos Respiratórios/induzido quimicamente , Adulto , Idoso , Idoso de 80 Anos ou mais , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/análise , Asma/epidemiologia , Cidades , Europa (Continente)/epidemiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Dióxido de Nitrogênio/análise , Dióxido de Nitrogênio/toxicidade , Razão de Chances , Ozônio/análise , Ozônio/toxicidade , Material Particulado/análise , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Transtornos Respiratórios/epidemiologia , Caminhada
2.
Environ Sci Pollut Res Int ; 18(7): 1202-12, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21373859

RESUMO

PURPOSE: The concentrations of PM(10) mass, PM(2.5) mass and particle number were continuously measured for 18 months in urban background locations across Europe to determine the spatial and temporal variability of particulate matter. METHODS: Daily PM(10) and PM(2.5) samples were continuously collected from October 2002 to April 2004 in background areas in Helsinki, Athens, Amsterdam and Birmingham. Particle mass was determined using analytical microbalances with precision of 1 µg. Pre- and post-reflectance measurements were taken using smoke-stain reflectometers. One-minute measurements of particle number were obtained using condensation particle counters. RESULTS: The 18-month mean PM(10) and PM(2.5) mass concentrations ranged from 15.4 µg/m(3) in Helsinki to 56.7 µg/m(3) in Athens and from 9.0 µg/m(3) in Helsinki to 25.0 µg/m(3) in Athens, respectively. Particle number concentrations ranged from 10,091 part/cm(3) in Helsinki to 24,180 part/cm(3) in Athens with highest levels being measured in winter. Fine particles accounted for more than 60% of PM(10) with the exception of Athens where PM(2.5) comprised 43% of PM(10). Higher PM mass and number concentrations were measured in winter as compared to summer in all urban areas at a significance level p < 0.05. CONCLUSIONS: Significant quantitative and qualitative differences for particle mass across the four urban areas in Europe were observed. These were due to strong local and regional characteristics of particulate pollution sources which contribute to the heterogeneity of health responses. In addition, these findings also bear on the ability of different countries to comply with existing directives and the effectiveness of mitigation policies.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Atmosfera/química , Monitoramento Ambiental , Material Particulado/análise , Cidades , Europa (Continente) , Humanos , Tamanho da Partícula , Estações do Ano , Fatores de Tempo , Emissões de Veículos/análise
3.
J Air Waste Manag Assoc ; 57(12): 1507-17, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18200936

RESUMO

The associations between residential outdoor and ambient particle mass, fine particle absorbance, particle number (PN) concentrations, and residential and traffic determinants were investigated in four European urban areas (Helsinki, Athens, Amsterdam, and Birmingham). A total of 152 nonsmoking participants with respiratory diseases, not exposed to occupational pollution, were included in the study, which comprised a 7-day intensive exposure monitoring period of both indoor and home outdoor particle mass and number concentrations. The same pollutants were also continuously measured at ambient fixed sites centrally located to the studied areas (fixed ambient sites). Relationships between concentrations measured directly outside the homes (residential outdoor) and at the fixed ambient sites were pollutant-specific, with substantial variations among the urban areas. Differences were more pronounced for coarse particles due to resuspension of road dust and PN, which is strongly related to traffic emissions. Less significant outdoor-to-fixed variation for particle mass was observed for Amsterdam and Birmingham, predominantly due to regional secondary aerosol. On the contrary, a strong spatial variation was observed for Athens and to a lesser extent for Helsinki. This was attributed to the overwhelming and time-varied inputs from traffic and other local sources. The location of the residence and traffic volume and distance to street and traffic light were important determinants of residential outdoor particle concentrations. On average, particle mass levels in suburban areas were less than 30% of those measured for residences located in the city center. Residences located less than 10 m from a street experienced 133% higher PN concentrations than residences located further away. Overall, the findings of this multi-city study, indicated that (1) spatial variation was larger for PN than for fine particulate matter (PM) mass and varied between the cities, (2) vehicular emissions in the residential street and location in the center of the city were significant predictors of spatial variation, and (3) the impact of traffic and location in the city was much larger for PN than for fine particle mass.


Assuntos
Cidades , Monitoramento Ambiental , Habitação , Material Particulado/análise , Meios de Transporte , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Alabama , Finlândia , Grécia , Países Baixos , Material Particulado/química , Fatores de Tempo
4.
Environ Sci Technol ; 38(22): 6125-31, 2004 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-15573616

RESUMO

The electrochemical degradation of methylparathion has been investigated by using Ti/Pt as anode, Stainless Steel 304 as cathode, and sodium chloride as electrolyte. The pesticide is rapidly degraded, but full mineralization is not observed. Degradation products have been monitored through gas chromatography and mass spectrometry, and the overall degradation process has been monitored through dissolved and particulate organic carbon, sulfur, and phosphorus measurements. Several intermediates have been identified, and oxalic, formic, and acetic acids as well as tetraphosphorus trisulfide have been recognized as final products of the degradation process. A proposed mechanism of the process is presented.


Assuntos
Eletroquímica/métodos , Inseticidas/química , Metil Paration/química , Purificação da Água/métodos , Cromatografia Gasosa-Espectrometria de Massas , Oxirredução , Platina/química , Cloreto de Sódio/química , Soluções , Aço Inoxidável/química , Titânio/química , Gerenciamento de Resíduos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...