Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 13(7): e0198248, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29969443

RESUMO

The field of dermal fillers is evolving rapidly and numerous products are currently on the market. Biodegradable polymers such as polycaprolactone (PCL) have been found to be compatible with several body tissues, and this makes them an ideal material for dermal filling purposes. Hollow PCL spheres were developed by the Council for Scientific and Industrial Research (CSIR) to serve both as an anchor point and a "tissue harbour" for cells. Particles were tested for cytotoxicity and cell adherence using mouse embryo fibroblasts (MEF). MEFs adhered to the particles and no significant toxic effects were observed based on morphology, cell growth, cell viability and cell cycle analysis, suggesting that the particles are suitable candidates for cell delivery systems in an in vivo setting. The objective of providing a "tissue harbour" was however not realized, as cells did not preferentially migrate into the ported particles. In vivo studies were conducted in BALB/c mice into whom particles were introduced at the level of the hypodermis. Mice injected with PCL particles (ported and non-ported; with or without MEFs) showed evidence of local inflammation and increased adipogenesis at the site of injection, as well as a systemic inflammatory response. These effects were also observed in mice that received apparently inert (polystyrene) particles. Ported PCL particles can therefore act as a cell delivery system and through their ability to induce adipogenesis, may also serve as a dermal bulking agent.


Assuntos
Preenchedores Dérmicos/farmacologia , Fibroblastos/transplante , Poliésteres/farmacologia , Engenharia Tecidual/métodos , Alicerces Teciduais , Adipogenia/efeitos dos fármacos , Animais , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Embrião de Mamíferos , Feminino , Fibroblastos/citologia , Fibroblastos/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Modelos Animais , Poliésteres/química , Poliestirenos/química , Poliestirenos/farmacologia , Cultura Primária de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA