Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(1): 16-25, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38109350

RESUMO

The anomalous Hall effect (AHE) is an important transport signature revealing topological properties of magnetic materials and their spin textures. Recently, MnBi2Te4 has been demonstrated to be an intrinsic magnetic topological insulator. However, the origin of its intriguing AHE behaviors remains elusive. Here, we demonstrate the Berry curvature-dominated intrinsic AHE in wafer-scale MnBi2Te4 films. By applying back-gate voltages, we observe an ambipolar conduction and n-p transition in ∼7-layer MnBi2Te4, where a quadratic relation between the AHE resistance and longitudinal resistance suggests its intrinsic AHE nature. In particular, for ∼3-layer MnBi2Te4, the AHE sign can be tuned from pristine negative to positive. First-principles calculations unveil that such an AHE reversal originated from the competing Berry curvature between oppositely polarized spin-minority-dominated surface states and spin-majority-dominated inner bands. Our results shed light on the underlying physical mechanism of the intrinsic AHE and provide new perspectives for the unconventional sign-tunable AHE.

2.
Phys Rev Lett ; 130(18): 186201, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37204911

RESUMO

We investigate the quantum anomalous Hall plateau transition in the presence of independent out-of-plane and in-plane magnetic fields. The perpendicular coercive field, zero Hall plateau width, and peak resistance value can all be systematically controlled by the in-plane magnetic field. The traces taken at various fields almost collapse into a single curve when the field vector is renormalized to an angle as a geometric parameter. These results can be explained consistently by the competition between magnetic anisotropy and in-plane Zeeman field, and the close relationship between quantum transport and magnetic domain structure. The accurate control of zero Hall plateau facilitates the search for chiral Majorana modes based on the quantum anomalous Hall system in proximity to a superconductor.

3.
Adv Mater ; 35(3): e2207322, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36526594

RESUMO

Symmetry manipulation can be used to effectively tailor the physical order in solid-state systems. With the breaking of both the inversion and time-reversal symmetries, nonreciprocal magneto-transport may arise in nonmagnetic systems to enrich spin-orbit effects. Here, the observation of unidirectional magnetoresistance (UMR) in lattice-matched InSb/CdTe films is investigated up to room temperature. Benefiting from the strong built-in electric field of 0.13 V nm-1 in the heterojunction region, the resulting Rashba-type spin-orbit coupling and quantum confinement result in a distinct sinusoidal UMR signal with a nonreciprocal coefficient that is 1-2 orders of magnitude larger than most non-centrosymmetric materials at 298 K. Moreover, this heterostructure configuration enables highly efficient gate tuning of the rectification response, wherein the UMR amplitude is enhanced by 40%. The results of this study advocate the use of narrow-bandgap semiconductor-based hybrid systems with robust spin textures as suitable platforms for the pursuit of controllable chiral spin-orbit applications.

4.
ACS Nano ; 16(1): 1134-1141, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35005892

RESUMO

The quantized version of the anomalous Hall effect realized in magnetic topological insulators (MTIs) has great potential for the development of topological quantum physics and low-power electronic/spintronic applications. Here we report the thickness-tailored quantum anomalous Hall (QAH) effect in Cr-doped (Bi,Sb)2Te3 thin films by tuning the system across the two-dimensional (2D) limit. In addition to the Chern number-related QAH phase transition, we also demonstrate that the induced hybridization gap plays an indispensable role in determining the ground magnetic state of the MTIs; namely, the spontaneous magnetization owing to considerable Van Vleck spin susceptibility guarantees the zero-field QAH state with unitary scaling law in thick samples, while the quantization of the Hall conductance can only be achieved with the assistance of external magnetic fields in ultrathin films. The modulation of topology and magnetism through structural engineering may provide useful guidance for the pursuit of other QAH-based phase diagrams and functionalities.

5.
Nat Commun ; 12(1): 6580, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34772912

RESUMO

Superconductor-ferromagnet interfaces in two-dimensional heterostructures present a unique opportunity to study the interplay between superconductivity and ferromagnetism. The realization of such nanoscale heterostructures in van der Waals (vdW) crystals remains largely unexplored due to the challenge of making atomically-sharp interfaces from their layered structures. Here, we build a vdW ferromagnetic Josephson junction (JJ) by inserting a few-layer ferromagnetic insulator Cr2Ge2Te6 into two layers of superconductor NbSe2. The critical current and corresponding junction resistance exhibit a hysteretic and oscillatory behavior against in-plane magnetic fields, manifesting itself as a strong Josephson coupling state. Also, we observe a central minimum of critical current in some JJ devices as well as a nontrivial phase shift in SQUID structures, evidencing the coexistence of 0 and π phase in the junction region. Our study paves the way to exploring sensitive probes of weak magnetism and multifunctional building-blocks for phase-related superconducting circuits using vdW heterostructures.

6.
ACS Nano ; 15(10): 15850-15857, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34644492

RESUMO

Quantum well states (QWSs) can form at the surface or interfaces of materials with confinement potential. They have broad applications in electronic and optical devices such as high mobility electron transistor, photodetector, and quantum well laser. The properties of the QWSs are usually the key factors for the performance of the devices. However, direct visualization and manipulation of such states are, in general, challenging. In this work, by using angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling microscopy/spectroscopy (STM/STS), we directly probe the QWSs generated on the vacuum interface of a narrow band gap semiconductor Nb2SiTe4. Interestingly, the position and splitting of QWSs could be easily manipulated via potassium (K) dosage onto the sample surface. Our results suggest Nb2SiTe4 to be an intriguing semiconductor system to study and engineer the QWSs, which has great potential in device applications.

7.
Sci Bull (Beijing) ; 66(18): 1830-1838, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36654392

RESUMO

The interplay between quenched disorder and critical behavior in quantum phase transitions is conceptually fascinating and of fundamental importance for understanding phase transitions. However, it is still unclear whether or not the quenched disorder influences the universality class of quantum phase transitions. More crucially, the absence of superconducting-metal transitions under in-plane magnetic fields in 2D superconductors imposes constraints on the universality of quantum criticality. Here, we observe the thickness-tuned universality class of superconductor-metal transition by changing the disorder strength in ß-W films with varying thickness. The finite-size scaling uncovers the switch of universality class: quantum Griffiths singularity to multiple quantum criticality at a critical thickness of tc⊥1~8nm and then from multiple quantum criticality to single criticality at tc⊥2~16nm. Moreover, the superconducting-metal transition is observed for the first time under in-plane magnetic fields and the universality class is changed at tc‖~8nm. The observation of thickness-tuned universality class under both out-of-plane and in-plane magnetic fields provides broad information for the disorder effect on superconducting-metal transitions and quantum criticality.

8.
ACS Nano ; 14(12): 17396-17404, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33301682

RESUMO

Spin-orbit coupling (SOC), the relativistic effect describing the interaction between the orbital and spin degrees of freedom, provides an effective way to tailor the spin/magnetic orders using electrical means. Here, we report the manipulation of the spin-orbit interaction in the lattice-matched InSb/CdTe heterostructures. Owing to the energy band bending at the heterointerface, the strong Rashba effect is introduced to drive the spin precession where pronounced weak antilocalization cusps are observed up to 100 K. With effective quantum confinement and suppressed bulk conduction, the SOC strength is found to be enhanced by 75% in the ultrathin InSb/CdTe film. Most importantly, we realize the electric-field control of the interfacial Rashba effect using a field-effect transistor structure and demonstrate the gate-tuning capability which is 1-2 orders of magnitude higher than other materials. The adoption of the InSb/CdTe integration strategy may set up a general framework for the design of strongly spin-orbit coupled systems that are essential for CMOS-compatible low-power spintronics.

9.
Adv Mater ; 32(34): e2001460, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32691882

RESUMO

Integration of a quantum anomalous Hall insulator with a magnetically ordered material provides an additional degree of freedom through which the resulting exotic quantum states can be controlled. Here, an experimental observation is reported of the quantum anomalous Hall effect in a magnetically-doped topological insulator grown on the antiferromagnetic insulator Cr2 O3 . The exchange coupling between the two materials is investigated using field-cooling-dependent magnetometry and polarized neutron reflectometry. Both techniques reveal strong interfacial interaction between the antiferromagnetic order of the Cr2 O3 and the magnetic topological insulator, manifested as an exchange bias when the sample is field-cooled under an out-of-plane magnetic field, and an exchange spring-like magnetic depth profile when the system is magnetized within the film plane. These results identify antiferromagnetic insulators as suitable candidates for the manipulation of magnetic and topological order in topological insulator films.

10.
Sci Adv ; 6(25): eaaz3595, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32596443

RESUMO

Quantum anomalous Hall effect has been observed in magnetically doped topological insulators. However, full quantization, up until now, is limited within the sub-1 K temperature regime, although the material's magnetic ordering temperature can go beyond 100 K. Here, we study the temperature limiting factors of the effect in Cr-doped (BiSb)2Te3 systems using both transport and magneto-optical methods. By deliberate control of the thin-film thickness and doping profile, we revealed that the low occurring temperature of quantum anomalous Hall effect in current material system is a combined result of weak ferromagnetism and trivial band involvement. Our findings may provide important insights into the search for high-temperature quantum anomalous Hall insulator and other topologically related phenomena.

11.
Nano Lett ; 20(3): 1731-1737, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32013439

RESUMO

Engineering the anomalous Hall effect (AHE) is the key to manipulate the magnetic orders in the emerging magnetic topological insulators (MTIs). In this letter, we synthesize the epitaxial Bi2Te3/MnTe magnetic heterostructures and observe pronounced AHE signals from both layers combined together. The evolution of the resulting hybrid AHE intensity with the top Bi2Te3 layer thickness manifests the presence of an intrinsic ferromagnetic phase induced by the topological surface states at the heterolayer interface. More importantly, by doping the Bi2Te3 layer with Sb, we are able to manipulate the sign of the Berry phase-associated AHE component. Our results demonstrate the unparalleled advantages of MTI heterostructures over magnetically doped TI counterparts in which the tunability of the AHE response can be greatly enhanced. This in turn unveils a new avenue for MTI heterostructure-based multifunctional applications.

12.
Natl Sci Rev ; 7(4): 745-754, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34692093

RESUMO

Mechanically exfoliated two-dimensional ferromagnetic materials (2D FMs) possess long-range ferromagnetic order and topologically nontrivial skyrmions in few layers. However, because of the dimensionality effect, such few-layer systems usually exhibit much lower Curie temperature (T C) compared to their bulk counterparts. It is therefore of great interest to explore effective approaches to enhance their T C, particularly in wafer-scale for practical applications. Here, we report an interfacial proximity-induced high-T C 2D FM Fe3GeTe2 (FGT) via A-type antiferromagnetic material CrSb (CS) which strongly couples to FGT. A superlattice structure of (FGT/CS)n, where n stands for the period of FGT/CS heterostructure, has been successfully produced with sharp interfaces by molecular-beam epitaxy on 2-inch wafers. By performing elemental specific X-ray magnetic circular dichroism (XMCD) measurements, we have unequivocally discovered that T C of 4-layer Fe3GeTe2 can be significantly enhanced from 140 K to 230 K because of the interfacial ferromagnetic coupling. Meanwhile, an inverse proximity effect occurs in the FGT/CS interface, driving the interfacial antiferromagnetic CrSb into a ferrimagnetic state as evidenced by double-switching behavior in hysteresis loops and the XMCD spectra. Density functional theory calculations show that the Fe-Te/Cr-Sb interface is strongly FM coupled and doping of the spin-polarized electrons by the interfacial Cr layer gives rise to the T C enhancement of the Fe3GeTe2 films, in accordance with our XMCD measurements. Strikingly, by introducing rich Fe in a 4-layer FGT/CS superlattice, T C can be further enhanced to near room temperature. Our results provide a feasible approach for enhancing the magnetic order of few-layer 2D FMs in wafer-scale and render opportunities for realizing realistic ultra-thin spintronic devices.

13.
J Phys Condens Matter ; 31(40): 405001, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31272092

RESUMO

The interaction between topological insulator (TI) and its adjacent magnetic layer serves as a basis for exploring the device application of TI. Here we investigate the modulation of the magnetotransport behavior of Bi2Te3 TI with a transition-metal oxide layer NiO. It is found that the weak-antilocalization effect is absent at low magnetic fields and the magnetoresistance ratio decreases monotonically with increasing the NiO growth temperature from 300 to 473 K, indicating the suppression of the topological surface states of Bi2Te3. Such behaviors are attributed to the decomposition of NiO and the concomitant formation of magnetic impurities at the Bi2Te3/NiO interface. Differently, the weak-antilocalization shows no significant weakening with the growth of Cr2O3 top layer, due to its better chemical stability. Our observation would be significant for the material selection for the device integration of TI.

14.
Phys Rev B ; 982018.
Artigo em Inglês | MEDLINE | ID: mdl-30984899

RESUMO

In the quantum anomalous Hall effect, quantized Hall resistance and vanishing longitudinal resistivity are predicted to result from the presence of dissipationless, chiral edge states and an insulating two-dimensional bulk, without requiring an external magnetic field. Here, we explore the potential of this effect in magnetic topological insulator thin films for metrological applications. Using a cryogenic current comparator system, we measure quantization of the Hall resistance to within one part per million and, at lower current bias, longitudinal resistivity under 10 mΩ at zero magnetic field. Increasing the current density past a critical value leads to a breakdown of the quantized, low-dissipation state, which we attribute to electron heating in bulk current flow. We further investigate the prebreakdown regime by measuring transport dependence on temperature, current, and geometry, and find evidence for bulk dissipation, including thermal activation and possible variable-range hopping.

15.
Nat Commun ; 8(1): 1836, 2017 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-29184065

RESUMO

Incorporating ferromagnetic dopants into three-dimensional topological insulator thin films has recently led to the realisation of the quantum anomalous Hall effect. These materials are of great interest since they may support electrical currents that flow without resistance, even at zero magnetic field. To date, the quantum anomalous Hall effect has been investigated using low-frequency transport measurements. However, transport results can be difficult to interpret due to the presence of parallel conductive paths, or because additional non-chiral edge channels may exist. Here we move beyond transport measurements by probing the microwave response of a magnetised disk of Cr-(Bi,Sb)2Te3. We identify features associated with chiral edge plasmons, a signature that robust edge channels are intrinsic to this material system. Our results provide a measure of the velocity of edge excitations without contacting the sample, and pave the way for an on-chip circuit element of practical importance: the zero-field microwave circulator.

16.
Science ; 357(6348): 294-299, 2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28729508

RESUMO

Majorana fermion is a hypothetical particle that is its own antiparticle. We report transport measurements that suggest the existence of one-dimensional chiral Majorana fermion modes in the hybrid system of a quantum anomalous Hall insulator thin film coupled with a superconductor. As the external magnetic field is swept, half-integer quantized conductance plateaus are observed at the locations of magnetization reversals, giving a distinct signature of the Majorana fermion modes. This transport signature is reproducible over many magnetic field sweeps and appears at different temperatures. This finding may open up an avenue to control Majorana fermions for implementing robust topological quantum computing.

17.
Nanoscale ; 9(9): 3086-3094, 2017 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-28195299

RESUMO

The realization and application of spintronic devices would be dramatically advanced if room-temperature ferromagnetism could be integrated into semiconductor nanostructures, especially when compatible with mature silicon technology. Herein, we report the observation of such a system - an Si/MnGe superlattice with quantum dots well aligned in the vertical direction successfully grown by molecular beam epitaxy. Such a unique system could take full advantage of the type-II energy band structure of the Si/Ge heterostructure, which could trap the holes inside MnGe QDs, significantly enhancing the hole-mediated ferromagnetism. Magnetic measurements indeed found that the superlattice structure exhibited a Curie temperature of above 400 K. Furthermore, zero-field cooling and field cooling curves could confirm the absence of ferromagnetic compounds, such as Ge8Mn11 (Tc ∼ 270 K) and Ge3Mn5 (Tc ∼ 296 K) in our system. Magnetotransport measurement revealed a clear magnetoresistance transition from negative to positive and a pronounced anomalous Hall effect. Such a unique Si/MnGe superlattice sets a new stage for strengthening ferromagnetism due to the enhanced hole-mediation by quantum confinement, which can be exploited for realizing the room-temperature Ge-based spin field-effect transistors in the future.

18.
Nat Mater ; 16(1): 94-100, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27798622

RESUMO

Magnetic topological insulators such as Cr-doped (Bi,Sb)2Te3 provide a platform for the realization of versatile time-reversal symmetry-breaking physics. By constructing heterostructures exhibiting Néel order in an antiferromagnetic CrSb and ferromagnetic order in Cr-doped (Bi,Sb)2Te3, we realize emergent interfacial magnetic phenomena which can be tailored through artificial structural engineering. Through deliberate geometrical design of heterostructures and superlattices, we demonstrate the use of antiferromagnetic exchange coupling in manipulating the magnetic properties of magnetic topological insulators. Proximity effects are shown to induce an interfacial spin texture modulation and establish an effective long-range exchange coupling mediated by antiferromagnetism, which significantly enhances the magnetic ordering temperature in the superlattice. This work provides a new framework on integrating topological insulators with antiferromagnetic materials and unveils new avenues towards dissipationless topological antiferromagnetic spintronics.

19.
Nat Commun ; 7: 12866, 2016 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-27762320

RESUMO

Voltage control of magnetism in ferromagnetic semiconductor has emerged as an appealing solution to significantly reduce the power dissipation and variability beyond current CMOS technology. However, it has been proven to be very challenging to achieve a candidate with high Curie temperature (Tc), controllable ferromagnetism and easy integration with current Si technology. Here we report the effective electric-field control of both ferromagnetism and magnetoresistance in unique MnxGe1-x nanomeshes fabricated by nanosphere lithography, in which a Tc above 400 K is demonstrated as a result of size/quantum confinement. Furthermore, by adjusting Mn doping concentration, extremely giant magnetoresistance is realized from ∼8,000% at 30 K to 75% at 300 K at 4 T, which arises from a geometrically enhanced magnetoresistance effect of the unique mesh structure. Our results may provide a paradigm for fundamentally understanding the high Tc in ferromagnetic semiconductor nanostructure and realizing electric-field control of magnetoresistance for future spintronic applications.

20.
Nat Nanotechnol ; 11(4): 352-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26727198

RESUMO

Electric-field manipulation of magnetic order has proved of both fundamental and technological importance in spintronic devices. So far, electric-field control of ferromagnetism, magnetization and magnetic anisotropy has been explored in various magnetic materials, but the efficient electric-field control of spin-orbit torque (SOT) still remains elusive. Here, we report the effective electric-field control of a giant SOT in a Cr-doped topological insulator (TI) thin film using a top-gate field-effect transistor structure. The SOT strength can be modulated by a factor of four within the accessible gate voltage range, and it shows strong correlation with the spin-polarized surface current in the film. Furthermore, we demonstrate the magnetization switching by scanning gate voltage with constant current and in-plane magnetic field applied in the film. The effective electric-field control of SOT and the giant spin-torque efficiency in Cr-doped TI may lead to the development of energy-efficient gate-controlled spin-torque devices compatible with modern field-effect semiconductor technologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...