Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(15)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39125661

RESUMO

The versatility of cytochrome P450 reductase (CPR) in transferring electrons to P450s from other closely related species has been extensively exploited, e.g., by using An. gambiae CPR (AgCPR), as a homologous surrogate, to validate the role of An. funestus P450s in insecticide resistance. However, genomic variation between the AgCPR and An. funestus CPR (AfCPR) suggests that the full metabolism spectrum of An. funestus P450s might be missed when using AgCPR. To test this hypothesis, we expressed AgCPR and AfCPR side-by-side with CYP6P9a and CYP6P9b and functionally validated their role in the detoxification of insecticides from five different classes. Major variations were observed within the FAD- and NADP-binding domains of AgCPR and AfCPR, e.g., the coordinates of the second FAD stacking residue AfCPR-Y456 differ from that of AgCPR-His456. While no significant differences were observed in the cytochrome c reductase activities, when co-expressed with their endogenous AfCPR, the P450s significantly metabolized higher amounts of permethrin and deltamethrin, with CYP6P9b-AfCPR membrane metabolizing α-cypermethrin as well. Only the CYP6P9a-AfCPR membrane significantly metabolized DDT (producing dicofol), bendiocarb, clothianidin, and chlorfenapyr (bioactivation into tralopyril). This demonstrates the broad substrate specificity of An. funestus CYP6P9a/-b, capturing their role in conferring cross-resistance towards unrelated insecticide classes, which can complicate resistance management.


Assuntos
Anopheles , Resistência a Inseticidas , Inseticidas , NADPH-Ferri-Hemoproteína Redutase , Piretrinas , Anopheles/genética , Anopheles/efeitos dos fármacos , Anopheles/enzimologia , Anopheles/metabolismo , Animais , Resistência a Inseticidas/genética , NADPH-Ferri-Hemoproteína Redutase/metabolismo , NADPH-Ferri-Hemoproteína Redutase/genética , Inseticidas/farmacologia , Inseticidas/metabolismo , Piretrinas/farmacologia , Piretrinas/metabolismo , Oxirredução , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Especificidade por Substrato , Nitrilas/metabolismo , Nitrilas/farmacologia , Permetrina/farmacologia
2.
PLoS Genet ; 19(3): e1010678, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36972302

RESUMO

Cross-resistance to insecticides in multiple resistant malaria vectors is hampering resistance management. Understanding its underlying molecular basis is critical to implementation of suitable insecticide-based interventions. Here, we established that the tandemly duplicated cytochrome P450s, CYP6P9a/b are driving carbamate and pyrethroid cross-resistance in Southern African populations of the major malaria vector Anopheles funestus. Transcriptome sequencing revealed that cytochrome P450s are the most over-expressed genes in bendiocarb and permethrin-resistant An. funestus. The CYP6P9a and CYP6P9b genes are overexpressed in resistant An. funestus from Southern Africa (Malawi) versus susceptible An. funestus (Fold change (FC) is 53.4 and 17 respectively), while the CYP6P4a and CYP6P4b genes are overexpressed in resistant An. funestus in Ghana, West Africa, (FC is 41.1 and 17.2 respectively). Other up-regulated genes in resistant An. funestus include several additional cytochrome P450s (e.g. CYP9J5, CYP6P2, CYP6P5), glutathione-S transferases, ATP-binding cassette transporters, digestive enzymes, microRNA and transcription factors (FC<7). Targeted enrichment sequencing strongly linked a known major pyrethroid resistance locus (rp1) to carbamate resistance centering around CYP6P9a/b. In bendiocarb resistant An. funestus, this locus exhibits a reduced nucleotide diversity, significant p-values when comparing allele frequencies, and the most non-synonymous substitutions. Recombinant enzyme metabolism assays showed that both CYP6P9a/b metabolize carbamates. Transgenic expression of CYP6P9a/b in Drosophila melanogaster revealed that flies expressing both genes were significantly more resistant to carbamates than controls. Furthermore, a strong correlation was observed between carbamate resistance and CYP6P9a genotypes with homozygote resistant An. funestus (CYP6P9a and the 6.5kb enhancer structural variant) exhibiting a greater ability to withstand bendiocarb/propoxur exposure than homozygote CYP6P9a_susceptible (e.g Odds ratio = 20.8, P<0.0001 for bendiocarb) and heterozygotes (OR = 9.7, P<0.0001). Double homozygote resistant genotype (RR/RR) were even more able to survive than any other genotype combination showing an additive effect. This study highlights the risk that pyrethroid resistance escalation poses to the efficacy of other classes of insecticides. Available metabolic resistance DNA-based diagnostic assays should be used by control programs to monitor cross-resistance between insecticides before implementing new interventions.


Assuntos
Anopheles , Inseticidas , Malária , Piretrinas , Animais , Inseticidas/farmacologia , Carbamatos/metabolismo , Piretrinas/metabolismo , Anopheles/genética , Drosophila melanogaster , Resistência a Inseticidas/genética , Mosquitos Vetores/genética , Citocromos/metabolismo , Gana
3.
Biomed Res Int ; 2023: 2754725, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36726837

RESUMO

The present study was carried out to investigate the anti-inflammatory activity of a methanolic extract and fractions of Uvaria comperei stems. The crude extract was obtained by maceration of the powder in methanol and fractions by vacuum chromatography from the methanolic extract. To study the anti-inflammatory activity in vitro, red blood cell lysis inhibition assay and albumin denaturation inhibition were performed, while in vivo measurements of carrageenan-induced paw oedema and formalin-induced pain in albino mice were performed. Acute toxicity and cytotoxicity studies of the fraction F2 were performed, as well as its HPLC, and some biochemical parameters were quantified. Uvaria comperei crude extract (UCCE) at 250 and 500 µg/mL completely inhibited albumin denaturation, while decreasing 75.5% of heat blood cell lysis at 500 µg/mL. The fractions 128-136 (F3), 10-11 (F1), and 56-62 (F2) at 500 µg/mL displayed a significant anti-inflammatory activity with percentages of inhibition of 60.5, 67.4, and 100%, respectively. Administration of fraction F2 (25, 50, and 100 mg/kg, p.o.) produced a dose-dependent inhibition of formalin-induced pain of 60.2% at 50 mg/kg in the neurogenic phase (p < 0.05) and 70.2% at 25 mg/kg in the inflammatory phase (p < 0.05). Similarly, the time-dependent increase in carrageenan-induced paw circumference induced by carrageenan was inhibited by pretreatment with F2: 50% of inhibition at 25 mg/kg after 30 min (p < 0.05) and 96.5% inhibition at 25 mg/kg after 6 h (p < 0.05). In this research, the fraction F2 presented its maximum analgesic property at 50 mg/kg, while it presented the highest anti-inflammatory property at 25 mg/kg. The oral lethal median dose (LD50) of F2 was determined to be greater than 2000 mg/kg; further low cytotoxicity in RAW cells was also observed. Overall, this work shows that the methanolic crude extract and fractions, mainly F2, of Uvaria comperei stem have interesting anti-inflammatory properties.


Assuntos
Uvaria , Animais , Camundongos , Carragenina/efeitos adversos , Extratos Vegetais/química , Anti-Inflamatórios/uso terapêutico , Analgésicos , Dor/tratamento farmacológico , Metanol , Edema/induzido quimicamente , Edema/tratamento farmacológico
4.
Genes (Basel) ; 12(4)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924421

RESUMO

Resistance is threatening the effectiveness of insecticide-based interventions in use for malaria control. Pinpointing genes associated with resistance is crucial for evidence-based resistance management targeting the major malaria vectors. Here, a combination of RNA-seq based genome-wide transcriptional analysis and RNA-silencing in vivo functional validation were used to identify key insecticide resistance genes associated with DDT and DDT/permethrin cross-resistance across Africa. A cluster of glutathione-S-transferase from epsilon group were found to be overexpressed in resistant populations of Anopheles funestus across Africa including GSTe1 [Cameroon (fold change, FC: 2.54), Ghana (4.20), Malawi (2.51)], GSTe2 [Cameroon (4.47), Ghana (7.52), Malawi (2.13)], GSTe3 [Cameroon (2.49), Uganda (2.60)], GSTe4 in Ghana (3.47), GSTe5 [Ghana (2.94), Malawi (2.26)], GSTe6 [Cameroun (3.0), Ghana (3.11), Malawi (3.07), Uganda (3.78)] and GSTe7 (2.39) in Ghana. Validation of GSTe genes expression profiles by qPCR confirmed that the genes are differentially expressed across Africa with a greater overexpression in DDT-resistant mosquitoes. RNAi-based knock-down analyses supported that five GSTe genes are playing a major role in resistance to pyrethroids (permethrin and deltamethrin) and DDT in An. funestus, with a significant recovery of susceptibility observed when GSTe2, 3, 4, 5 and GSTe6 were silenced. These findings established that GSTe3, 4, 5 and 6 contribute to DDT resistance and should be further characterized to identify their specific genetic variants, to help design DNA-based diagnostic assays, as previously done for the 119F-GSTe2 mutation. This study highlights the role of GSTes in the development of resistance to insecticides in malaria vectors and calls for actions to mitigate this resistance.


Assuntos
Anopheles/genética , Perfilação da Expressão Gênica/métodos , Glutationa Transferase/genética , Resistência a Inseticidas , Malária/transmissão , Animais , DDT/farmacologia , Humanos , Proteínas de Insetos/genética , Mosquitos Vetores/genética , Família Multigênica , Permetrina/farmacologia , Análise de Sequência de RNA , Sequenciamento do Exoma/métodos
5.
Genes (Basel) ; 11(2)2020 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-32013227

RESUMO

Growing insecticide resistance in malaria vectors is threatening the effectiveness of insecticide-based interventions, including Long Lasting Insecticidal Nets (LLINs). However, the impact of metabolic resistance on the effectiveness of these tools remains poorly characterized. Using experimental hut trials and genotyping of a glutathione S-transferase resistance marker (L119F-GSTe2), we established that GST-mediated resistance is reducing the efficacy of LLINs against Anopheles funestus. Hut trials performed in Cameroon revealed that Piperonyl butoxide (PBO)-based nets induced a significantly higher mortality against pyrethroid resistant An. funestus than pyrethroid-only nets. Blood feeding rate and deterrence were significantly higher in all LLINs than control. Genotyping the L119F-GSTe2 mutation revealed that, for permethrin-based nets, 119F-GSTe2 resistant mosquitoes have a greater ability to blood feed than susceptible while the opposite effect is observed for deltamethrin-based nets. For Olyset Plus, a significant association with exophily was observed in resistant mosquitoes (OR = 11.7; p < 0.01). Furthermore, GSTe2-resistant mosquitoes (cone assays) significantly survived with PermaNet 2.0 (OR = 2.1; p < 0.01) and PermaNet 3.0 (side) (OR = 30.1; p < 0.001) but not for Olyset Plus. This study shows that the efficacy of PBO-based nets (e.g., blood feeding inhibition) against pyrethroid resistant malaria vectors could be impacted by other mechanisms including GST-mediated metabolic resistance not affected by the synergistic action of PBO. Mosaic LLINs incorporating a GST inhibitor (diethyl maleate) could help improve their efficacy in areas of GST-mediated resistance.


Assuntos
Anopheles/efeitos dos fármacos , Glutationa Transferase/genética , Resistência a Inseticidas/efeitos dos fármacos , Butóxido de Piperonila/farmacologia , Piretrinas/farmacologia , Animais , Anopheles/genética , Camarões , Proteínas de Insetos/genética , Mosquiteiros Tratados com Inseticida/parasitologia , Malária/prevenção & controle , Malária/transmissão , Controle de Mosquitos , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA