Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 6(19): 3911-4, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26722892

RESUMO

Transient negative ions (TNIs) are ubiquitous in electron-molecule scattering at low electron impact energies (0-20 eV) and are particularly effective in damaging large biomolecules. Because ionizing radiation generates mostly 0-20 eV electrons, TNIs are expected to play important roles in cell mutagenesis and death during radiotherapeutic cancer treatment, although this hypothesis has never been directly verified. Here, we measure the efficiency of transforming E. coli bacteria by inserting into the cells, pGEM-3ZfL(-) plasmid DNA that confers resistance to the antibiotic ampicillin. Before transformation, plasmids are irradiated with electrons of specific energies between 0.5 and 18 eV. The loss of transformation efficiency plotted as a function of irradiation energy reveals TNIs at 5.5 and 9.5 eV, corresponding to similar states observed in the yields of DNA double strand breaks. We show that TNIs are detectable in the electron-energy dependence of a biological process and can decrease cell viability.


Assuntos
DNA/efeitos da radiação , Elétrons , Escherichia coli/genética , Plasmídeos , Transformação Bacteriana , DNA/genética , Dano ao DNA
2.
Chem Biol Interact ; 217: 9-18, 2014 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-24732435

RESUMO

The combination of cisplatin and ionizing radiation (IR) increases cell toxicity by both enhancing DNA damage and inhibiting repair mechanisms. Although the formation of cluster DNA lesions, particularly double-strand breaks (DSB) at the site of cisplatin-DNA-adducts has been reported to induce cell death, the contribution of DSB and non-DSB cluster lesions to the cellular toxicity is still unknown. Although both lesions are toxic, it is not always possible to measure their frequency and cell survival in the same model system. To overcome this problem, here, we investigate the effect of cisplatin-adducts on the induction of DSB and non-DSB cluster DNA lesions by IR and determine the impact of such lesions on plasmid functionality. Cluster lesions are two or more lesions on opposite DNA strands with a short distance such that error free repair is difficult or impossible. At a ratio of two cisplatin per plasmid, irradiation of platinated DNA in solution with (137)Cs γ-rays shows enhancements in the formation of DNA DSB and non-DSB cluster lesions by factors of 2.6 and 2.1, respectively, compared to unmodified DNA. However, in absolute terms, the yield for non-DSB cluster lesions is far larger than that for DSB, by a factor of 26. Unmodified and cisplatin-modified DNA were irradiated and subsequently transformed into Escherichia coli to give survival curves representing the functionality of the plasmid DNA as a function of radiation dose. Our results demonstrate that non-DSB cluster lesions are the only toxic lesions present at a sufficient frequency to account for the loss of DNA functionality. Our data also show that Frank-DSB lesions are simply too infrequent to account for the loss of DNA functionality. In conclusion, non-DSB cluster DNA damage is known to be difficult to repair and is probably the lesion responsible for the loss of functionality of DNA modified by cisplatin.


Assuntos
Cisplatino/metabolismo , Cisplatino/efeitos da radiação , Adutos de DNA/metabolismo , Adutos de DNA/efeitos da radiação , Dano ao DNA , Reparo do DNA , DNA/efeitos dos fármacos , DNA/efeitos da radiação , Plasmídeos/efeitos da radiação , Cisplatino/química , Cisplatino/farmacologia , DNA/metabolismo , DNA Super-Helicoidal/efeitos dos fármacos , DNA Super-Helicoidal/metabolismo , DNA Super-Helicoidal/efeitos da radiação , Raios gama , Radiação Ionizante
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...