Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Tissue Cell ; 85: 102215, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37716177

RESUMO

Three-dimensional nanofiber scaffolds offer a promising method for simulating in vivo conditions within the laboratory. This study aims to investigate the influence of a bilayer amniochorionic membrane/nanofibrous fibroin scaffold on the differentiation of human menstrual blood mesenchymal stromal/stem cells (MenSCs) into female germ cells. MenSCs were isolated and assigned to four culture groups: (i) MenSCs co-cultured with granulosa cells (GCs) using the scaffold (3D-T group), (ii) MenSCs using the scaffold alone (3D-C group), (iii) MenSCs co-cultured only with GCs (2D-T group), and (iv) MenSCs without co-culture or scaffold (2D-C group). Both MenSCs and GCs were independently cultured for two weeks before co-culturing was initiated. Flow cytometry was employed to characterize MenSCs based on positive markers (CD73, CD90, and CD105) and negative markers (CD45 and CD133). Additionally, flow cytometry and immunocytochemistry were used to characterize the GCs. Differentiated MenSCs were analyzed using real-time PCR and immunostaining. The real-time PCR results demonstrated significantly higher levels of VASA expression in the 3D-T group compared to the 3D-C, 2D-T, and 2D-C groups. Similarly, the SCP3 mRNA level in the 3D-T group was notably elevated compared to the 3D-C, 2D-T, and 2D-C groups. Moreover, the expression of GDF9 was significantly higher in the 3D-T group when compared to the 3D-C, 2D-T, and 2D-C groups. Immunostaining results revealed a lack of signal for VASA, SCP3, or GDF9 markers in the 2D-T group, while some cells in the 3D-T group exhibited positive staining for all these proteins. These findings suggest that the combination of a bilayer amniochorionic membrane/nanofibrous fibroin scaffold with co-culturing GCs facilitates the differentiation of MenSCs into female germ cells.


Assuntos
Fibroínas , Células-Tronco Mesenquimais , Feminino , Humanos , Fibroínas/química , Alicerces Teciduais/química , Âmnio , Diferenciação Celular , Células Germinativas , Células Cultivadas
2.
Stem Cells Int ; 2021: 1634782, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745268

RESUMO

Mesenchymal stromal cells (MSCs) are a heterogeneous population of adult stem cells, which are multipotent and possess the ability to differentiate/transdifferentiate into mesodermal and nonmesodermal cell lineages. MSCs display broad immunomodulatory properties since they are capable of secreting growth factors and chemotactic cytokines. Safety, accessibility, and isolation from patients without ethical concern make MSCs valuable sources for cell therapy approaches in autoimmune, inflammatory, and degenerative diseases. Many studies have been conducted on the application of MSCs as a new therapy, but it seems that a low percentage of them is related to clinical trials, especially completed clinical trials. Considering the importance of clinical trials to develop this type of therapy as a new treatment, the current paper is aimed at describing characteristics of MSCs and reviewing relevant clinical studies registered on the NIH database during 2016-2020 to discuss recent advances on MSC-based therapeutic approaches being used in different diseases.

3.
Heliyon ; 7(9): e07996, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34589625

RESUMO

BACKGROUND: Alzheimer's disease (AD) is one of the most common NDs leading to cognitive dysfunctions and dementia which are progressively worsen with age. Cell therapy is currently of particular interest in treatment of neurodegenerative disease (ND) such as AD. However, the effective treatment for AD is yet to be found. OBJECTIVE: In this study, the possible roles of human umbilical mesnchymal stromal cord (hUMSCs) and adipose mesenchymal stem cells (hAD-MSCs) in neurogenesis and synaptic function were investigated using a ß-amyloid 1-42 (ß A42)-induced AD rat model. METHODS: hUMSCs and hAD-MSCs were isolated from umbilical cord stroma and adipose tissue, respectively. The expression of Mesenchymal (CD73, CD90 and CD105) and hematopoietic (CD45 and CD133) markers of hUMSCs and hAD-MSCs were confirmed by flow cytometry. Alzheimer's rat model was created by ß-amyloid 1-42 injection into the hippocampus and confirmed by Morris Water Maze and immunohistochemical staining. hUMSCs and hAD-MSCs were injected in Alzheimer's rat model, intravenously. Deposition of ß-amyloid in the CA1 of hippocampus was assayed 3 months after cell administration. The expression of synaptophysin and GAP43 proteins was assessed by Western blot. Neural death was assessed by Nissl staining. RESULTS: The data obtained from flow cytometry showed that surface mesenchymal and hematopoteic markers of the fibroblastic like cells isolated from adipose tissue and umbilical cord were expressed highly in hUMSCs and mostly in hAD-SCs. Transplantation of MSCs reduced ß-amyloid deposition in the hippocampus of the AD rats compared to the ß-amyloid group. The rate of neuronal cell death in the hippocampus of the ß-amyloid-treated rats was significantly increased compared to that of the control group. The percentage of apoptotic cells in this group was 72.98 ± 1.25, which was significantly increased compared to the control group. Transplantation of either hUMSCs or hAD-SCs, respectively, resulted in a significant reduction in the apoptotic rate of the neuronal cells in the hippocampus by 39.47 ± 0.01 (p = 0.0001) and 43.23 ± 0.577 (p = 0.001) compared to the ß-amyloid group. MSC transplantation resulted in a significant up-regulation in the expression levels of both synaptogenic (synaptophysin) and neurogenic markers (GAP43) by 1.289 ± 0.112 (P = 0.02) and 1.112 ± 0.106 (P = 0.005) fold in the hUMSCs-treated group and 1.174 ± 0.105 (P = 0.04) and 0.978 ± 0.167 (P = 0.008) fold in the hAD-SCs-treated group, respectively. CONCLUSION: Intravenous injection of hUMSCs and hAD-MSCs is a safe approach that improves synaptic function and neurogenesis via up-regulation of synaptophysin and GAP43 protein expression levels, respectively, in Alzheimer's model. Intravenous injection of both applied SCs could improve learning and cognitive impairment induced by ß A42 injection.

4.
Med J Islam Repub Iran ; 35: 129, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35321367

RESUMO

Background: A wide variety of cytokines are released from human amniotic membrane cells (hAMCs), which can increase the rate of differentiation of mesenchymal stem cells into the neurons. We studied the effect of Retinoic Acid (RA) on the differentiation rate of human Umbilical Cord Mesenchymal Stem Cells (hUMSCs) which were co-cultured with hAMCs. Methods: In this experimental study, both hUMSCs and hAMCs were isolated from postpartum human umbilical cords and placenta respectively. The expression of mesenchymal (CD73, CD90 and CD105), hematopoietic and endothelial (CD34 and CD45) markers in hUMSCs were confirmed by flow cytometry. The hUMSCs were cultured in four distinct groups: group 1) Control, group 2) Co-culture with hAMCs, group 3) RA treatment and group 4) Co-culture with hAMCs treated by RA. Twelve days after culturing, the expression of NSE, MAP2 and ChAT differentiation genes and their related proteins were examined by real-time PCR and immunocytochemistry respectively. Results: The flow-cytometry analysis indicated increased expression of mesenchymal markers and a low expression of both hematopoietic and endothelial markers (CD73:98.24%, CD90: 97.32%, CD105: 90.75%, CD34: 2.96%, and CD45:1.74%). Moreover, the expression of both NSE and MAP2 markers was increased significantly in all studied groups in comparison to the control group On the other hand, the expression of ChAT had a significant increase in the group 2 and 4 (RA and RA+ co-culture). Conclusion: RA can be used as an effective inducer to differentiate hUMSCs into cholinergic-like cells, and hAMCs could increase the number of differentiated cells as an effective factor.

5.
Anat Histol Embryol ; 49(3): 359-364, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32034794

RESUMO

Supplements produced by mouse testicular cells (mTCs) and the interaction between cells can increase the differentiation rate of human umbilical cord mesenchymal stem cells (hUCMSCs) into the germ-like cells. We studied the differentiation rate of hUCMSCs into the germ-like cells under effect of mTCs co-culturing. Isolated hUCMSCs from postpartum human umbilical cords were cultured. Then, the expression of mesenchymal (CD73, CD90 and CD105) and haematopoietic (CD34 and CD45) markers of hUCMSCs were confirmed by flow cytometry. Then, the hUCMSCs were cultured in four distinct groups: (a) control, (b) co-culture until D0, (c) co-culture until D5 and (d) co-culture until D10, in order to differentiate into the germ-like cells. After 10 days, the expression of OCT4, VASA, Fragilis and SYCP3 genes were examined by Real-Time qPCR. The flow cytometry indicated a high expression of mesenchymal markers and a low expression of haematopoietic markers (CD73:98.6%, CD90: 99.1%, CD105: 99.5%, CD34: 4.22% and CD45: 2.54%). The expression of OCT4 decreased during the time while the expression of VASA, Fragilis and SYCP3 markers increased in the co-culture with testicular cells (p value <.05). Co-culture with mTCs may be used as an effective method to differentiate hUCMSCs into germ-like cells.


Assuntos
Diferenciação Celular , Células-Tronco Mesenquimais/citologia , Cordão Umbilical/citologia , Animais , Células Cultivadas , Técnicas de Cocultura , Humanos , Masculino , Testículo/citologia , Testículo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...