Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-35640825

RESUMO

Autophagy is regulated by phosphoinositides. We have previously shown that phosphatidylinositol 4-phosphate (PtdIns(4)P) is localized in the autophagosomal membrane. Additionally, in yeast cells, phosphatidylinositol 4-kinases Pik1p and Stt4p play important roles in the formation of the autophagosome and its fusion with the vacuole, respectively. In this study, we analyzed the primary role of PtdIns(4)P phosphatases in yeast autophagy. The PtdIns(4)P labeling densities in the membranes of the vacuoles, mitochondria, nucleus, endoplasmic reticulum, and plasma membrane dramatically increased in the phosphatase deletion mutants sac1∆ and sjl3∆, and the temperature-sensitive mutant sac1ts/sjl3∆ at the restrictive temperature. GFP-Atg8 processing assay indicated defective autophagy in the sac1∆ and sac1ts/sjl3∆ mutants. In contrast to the localization of PtdIns(4)P in the luminal leaflet of autophagosomal membranes in the wild-type yeast, PtdIns(4)P was localized in both the luminal and cytoplasmic leaflets of the autophagosomal membranes in the sac1∆ strain. In addition, the number of autophagic bodies in the vacuole significantly decreased in the sac1∆ strain, although autophagosomes were present in the cytoplasm. In the sac1ts/sjl3∆ strain, the number of autophagosomes in the cytoplasm dramatically decreased at the restrictive temperature. Considering that the numbers of autophagosomes and autophagic bodies in the sjl3∆ strain were comparable to those in the wild-type yeast, we found that the autophagosome could not be formed when PtdIns(4)P phosphatase activities of both Sac1p and Sjl3p were diminished. Together, these results indicate that the turnover of PtdIns(4)P by phosphatases is essential for autophagosome biogenesis.


Assuntos
Monoéster Fosfórico Hidrolases , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Retículo Endoplasmático/metabolismo , Fosfatidilinositóis/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Sci Rep ; 11(1): 14890, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34290278

RESUMO

Lipid rafts, sterol-rich and sphingolipid-rich microdomains on the plasma membrane are important in processes like cell signaling, adhesion, and protein and lipid transport. The virulence of many eukaryotic parasites is related to raft microdomains on the cell membrane. In the malaria parasite Plasmodium falciparum, glycosylphosphatidylinositol-anchored proteins, which are important for invasion and are possible targets for vaccine development, are localized in the raft. However, rafts are poorly understood. We used quick-freezing and freeze-fracture immuno-electron microscopy to examine the localization of monosialotetrahexosylganglioside (GM1) and monosialodihexosylganglioside (GM3), putative raft microdomain components in P. falciparum and infected erythrocytes. This method immobilizes molecules in situ, minimizing artifacts. GM3 was localized in the exoplasmic (EF) and cytoplasmic leaflets (PF) of the parasite and the parasitophorous vacuole (PV) membranes, but solely in the EF of the infected erythrocyte membrane, as in the case for uninfected erythrocytes. Phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) was localized solely in the PF of erythrocyte, parasite, and PV membranes. This is the first time that GM3, the major component of raft microdomains, was found in the PF of a biological membrane. The unique localization of raft microdomains may be due to P. falciparum lipid metabolism and its unique biological processes, like protein transport from the parasite to infected erythrocytes.


Assuntos
Gangliosídeo G(M3)/metabolismo , Plasmodium falciparum/metabolismo , Plasmodium falciparum/patogenicidade , Citoplasma/metabolismo , Membrana Eritrocítica/metabolismo , Glicosilfosfatidilinositóis/metabolismo , Humanos , Metabolismo dos Lipídeos , Microdomínios da Membrana/metabolismo , Transporte Proteico , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA