Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(2): 856-871, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38084890

RESUMO

Shiga toxin (Stx) released by Shiga toxin producing Escherichia coli (STEC) causes life-threatening illness. Its production and release require induction of Stx-encoding prophage resident within the STEC genome. We identified two different STEC strains, PA2 and PA8, bearing Stx-encoding prophage whose sequences primarily differ by the position of an IS629 insertion element, yet differ in their abilities to kill eukaryotic cells and whose prophages differ in their spontaneous induction frequencies. The IS629 element in ϕPA2, disrupts an ORF predicted to encode a DNA adenine methyltransferase, whereas in ϕPA8, this element lies in an intergenic region. Introducing a plasmid expressing the methyltransferase gene product into ϕPA2 bearing-strains increases both the prophage spontaneous induction frequency and virulence to those exhibited by ϕPA8 bearing-strains. However, a plasmid bearing mutations predicted to disrupt the putative active site of the methyltransferase does not complement either of these defects. When complexed with a second protein, the methyltransferase holoenzyme preferentially uses 16S rRNA as a substrate. The second subunit is responsible for directing the preferential methylation of rRNA. Together these findings reveal a previously unrecognized role for rRNA methylation in regulating induction of Stx-encoding prophage.


Assuntos
Metiltransferases , Prófagos , Escherichia coli Shiga Toxigênica , Humanos , Infecções por Escherichia coli/microbiologia , Metiltransferases/genética , Prófagos/genética , RNA Ribossômico 16S , Escherichia coli Shiga Toxigênica/genética , Escherichia coli Shiga Toxigênica/patogenicidade , Escherichia coli Shiga Toxigênica/virologia , Virulência
2.
Microbiol Spectr ; 11(1): e0293022, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36648221

RESUMO

Protozoan predation is a major cause of bacterial mortality. The first step of predation for phagocytic amoebae is the recognition of their prey. Lipopolysaccharide (LPS) is a major component of Gram-negative bacteria and is only present on the outer leaflet of the outer membrane lipid bilayer. LPS consists of three distinct regions: lipid A, an oligosaccharide core, and O-polysaccharide. Previous research in our lab determined that the oligosaccharide (OS) region of LPS mediates the recognition and internalization of Escherichia coli by Acanthamoeba castellanii. The oligosaccharide region is conceptually divided into the inner core and outer core. The LPS of any given E. coli strain contains only one of five different OS structures: K-12 and R1 to R4. All OSs contain the same inner core sugars but different outer core sugars. Here, we show that the Kdo2 moiety of the inner core is necessary and sufficient for E. coli recognition and internalization by A. castellanii. We also show that the precise composition of the variable outer core OS region modulates the efficiency with which A. castellanii consumes bacteria. The latter finding indicates that outer core OS composition plays a role in bacterial defense against phagocytic predators. IMPORTANCE Rather than being transmitted from host to host, most opportunistic bacterial pathogens reside in the environment for significant amounts of time. Protist predation is a major cause of bacterial mortality. To enhance their survival in the environment, bacteria have evolved various defense strategies such as filamentation, increased motility, biofilm formation, toxin release, and modification of cell wall structure; strategies which also enhance their virulence to humans. This work shows that the major component of the bacterial cell wall, LPS, also known as bacterial endotoxin, is a "dual use" factor, regulating amoeba predation of bacteria in addition to its well-known role as a human virulence factor. Both these functions are governed by the same parts of LPS. Thus, the structure and composition of this "dual use" factor likely evolved as a response to constant voracious protist grazing pressure in the environment, rather than during short-term infections of human and animals.


Assuntos
Acanthamoeba castellanii , Escherichia coli , Animais , Humanos , Escherichia coli/fisiologia , Lipopolissacarídeos , Acanthamoeba castellanii/microbiologia , Comportamento Predatório , Oligossacarídeos , Açúcares
3.
Front Oncol ; 12: 933446, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992795

RESUMO

MDM2 and MDM4 proteins are key negative regulators of tumor suppressor p53. MDM2 and MDM4 interact via their RING domains and form a heterodimer polyubiquitin E3 ligase essential for p53 degradation. MDM4 also forms heterodimer E3 ligases with MDM2 isoforms that lack p53-binding domains, which regulate p53 and MDM4 stability. We are working to identify small-molecule inhibitors targeting the RING domain of MDM2-MDM4 (MMRi) that can inactivate the total oncogenic activity of MDM2-MDM4 heterodimers. Here, we describe the identification and characterization of MMRi62 as an MDM4-degrader and apoptosis inducer in leukemia cells. Biochemically, in our experiments, MMRi62 bound to preformed RING domain heterodimers altered the substrate preference toward MDM4 ubiquitination and promoted MDM2-dependent MDM4 degradation in cells. This MDM4-degrader activity of MMRi62 was found to be associated with potent apoptosis induction in leukemia cells. Interestingly, MMRi62 effectively induced apoptosis in p53 mutant, multidrug-resistant leukemia cells and patient samples in addition to p53 wild-type cells. In contrast, MMRi67 as a RING heterodimer disruptor and an enzymatic inhibitor of the MDM2-MDM4 E3 complex lacked MDM4-degrader activity and failed to induce apoptosis in these cells. In summary, this study identifies MMRi62 as a novel MDM2-MDM4-targeting agent and suggests that small molecules capable of promoting MDM4 degradation may be a viable new approach to killing leukemia cells bearing non-functional p53 by apoptosis.

4.
BMC Genomics ; 20(1): 504, 2019 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-31208335

RESUMO

BACKGROUND: Enterohemorrhagic Escherichia coli (E. coli) are intestinal pathogenic bacteria that cause life-threatening disease in humans. Their cardinal virulence factor is Shiga toxin (Stx), which is encoded on lambdoid phages integrated in the chromosome. Stx phages can infect and lysogenize susceptible bacteria, thus either increasing the virulence of already pathogenic bacterial hosts or transforming commensal strains into potential pathogens. There is increasing evidence that Stx phage-encoded factors adaptively regulate bacterial host gene expression. Here, we investigated the effects of Stx phage carriage in E. coli K-12 strain MG1655. We compared the transcriptome and phenotype of naive MG1655 and two lysogens carrying closely related Stx2a phages: ϕO104 from the exceptionally pathogenic 2011 E. coli O104:H4 outbreak strain and ϕPA8 from an E. coli O157:H7 isolate. RESULTS: Analysis of quantitative RNA sequencing results showed that, in comparison to naive MG1655, genes involved in mixed acid fermentation were upregulated, while genes encoding NADH dehydrogenase I, TCA cycle enzymes and proteins involved in the transport and assimilation of carbon sources were downregulated in MG1655::ϕO104 and MG1655::ϕPA8. The majority of the changes in gene expression were found associated with the corresponding phenotypes. Notably, the Stx2a phage lysogens displayed moderate to severe growth defects in minimal medium supplemented with single carbon sources, e.g. galactose, ribose, L-lactate. In addition, in phenotype microarray assays, the Stx2a phage lysogens were characterized by a significant decrease in the cell respiration with gluconeogenic substrates such as amino acids, nucleosides, carboxylic and dicarboxylic acids. In contrast, MG1655::ϕO104 and MG1655::ϕPA8 displayed enhanced respiration with several sugar components of the intestinal mucus, e.g. arabinose, fucose, N-acetyl-D-glucosamine. We also found that prophage-encoded factors distinct from CI and Cro were responsible for the carbon utilization phenotypes of the Stx2a phage lysogens. CONCLUSIONS: Our study reveals a profound impact of the Stx phage carriage on E. coli carbon source utilization. The Stx2a prophage appears to reprogram the carbon metabolism of its bacterial host by turning down aerobic metabolism in favour of mixed acid fermentation.


Assuntos
Carbono/metabolismo , Escherichia coli O157/genética , Escherichia coli O157/metabolismo , Regulação Bacteriana da Expressão Gênica , Prófagos/fisiologia , Toxina Shiga/metabolismo , Escherichia coli O157/crescimento & desenvolvimento , Escherichia coli O157/virologia , Perfilação da Expressão Gênica , Fenótipo , Prófagos/metabolismo
5.
Microbiologyopen ; 8(2): e00636, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29675935

RESUMO

Temperate phage encoded Shiga toxin (Stx) kills the bacterivorous predator, Tetrahymena thermophila, providing Stx+ Escherichia coli with a survival advantage over Stx- cells. Although bacterial death accompanies Stx release, since bacteria grow clonally the fitness benefits of predator killing accrue to the kin of the sacrificed organism, meaning Stx-mediated protist killing is a form of self-destructive cooperation. We show here that the fitness benefits of Stx production are not restricted to the kin of the phage-encoding bacteria. Instead, nearby "free loading" bacteria, irrespective of their genotype, also reap the benefit of Stx-mediated predator killing. This finding indicates that the phage-borne Stx exotoxin behaves as a public good. Stx is encoded by a mobile phage. We find that Stx-encoding phage can use susceptible bacteria in the population as surrogates to enhance toxin and phage production. Moreover, our findings also demonstrate that engulfment and concentration of Stx-encoding and susceptible Stx- bacteria in the Tetrahymena phagosome enhances the transfer of Stx-encoding temperate phage from the host to the susceptible bacteria. This transfer increases the population of cooperating bacteria within the community. Since these bacteria now encode Stx, the predation-stimulated increase in phage transfer increases the population of toxin encoding bacteria in the environment.


Assuntos
Antibiose , Colífagos/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/virologia , Toxinas Shiga/toxicidade , Tetrahymena thermophila/efeitos dos fármacos , Tetrahymena thermophila/crescimento & desenvolvimento , Interações Microbianas , Toxinas Shiga/genética , Toxinas Shiga/metabolismo
6.
Int J Med Microbiol ; 308(7): 956-961, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30030029

RESUMO

Shiga toxin-producing Escherichia coli (STEC) are a diverse group of strains that are implicated in over 270,000 cases of human illness annually in the United States alone. Shiga toxin (Stx), encoded by a resident temperate lambdoid bacteriophage, is the main STEC virulence factor. Although the population structure of E. coli O157:H7, the most common disease-causing STEC strain, is highly homogenous, the range of clinical illness caused by this strain varies by dramatically outbreak, suggesting that human virulence is evolving. However, the factors governing this variation in disease severity are poorly understood. STEC evolved from an O55:H7-like progenitor into a human pathogen. In addition to causing human disease, Stx released from STEC kill bacterivorous protist predators and enhance bacterial survival in the face of protist predation. Cattle are the primary reservoir for STEC and protists and bacteria occur together within the ruminant intestinal tract. Cattle associated STEC are not highly pathogenic to humans. These observations suggest that disease causing STEC strains evolved from cattle-associated "antipredator" STEC strains. To test this idea and to gain insight into the features that govern the evolution of STEC from a commensal strain of ruminants strain to virulent human pathogen, we compared the predation resistance of STEC strains isolated from asymptomatic infected cows and human patients. We find that STEC O157:H7 progenitor lineages and clades are more effective than human associated ones at killing the types of protist predators. In addition, our results indicate that the presence of Stx2c-containing bacteriophage is associated with more efficient amoeba killing. Also, these phage apparently also encode Q21-like version of the Q antitermination protein, the protein that controls expression of Stx.


Assuntos
Acanthamoeba castellanii/microbiologia , Escherichia coli O157/genética , Escherichia coli O157/patogenicidade , Toxina Shiga II/genética , Toxina Shiga II/metabolismo , Acanthamoeba castellanii/crescimento & desenvolvimento , Animais , Proteínas de Bactérias/genética , Bacteriófagos/genética , Bovinos , Doenças dos Bovinos/microbiologia , Infecções por Escherichia coli/microbiologia , Humanos , Proteínas de Ligação a RNA/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
7.
Viruses ; 10(5)2018 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-29710828

RESUMO

Shiga toxin (Stx)-encoding E. coli (STEC) strains are responsible for sporadic outbreaks of food poisoning dating to 1982, when the first STEC strain, E. coli O157:H7, was isolated. Regardless of STEC serotype, the primary symptoms of STEC infections are caused by Stx that is synthesized from genes resident on lambdoid prophage present in STEC. Despite similar etiology, the severity of STEC-mediated disease varies by outbreak. However, it is unclear what modulates the severity of STEC-mediated disease. Stx production and release is controlled by lytic growth of the Stx-encoding bacteriophage, which in turn, is controlled by the phage repressor. Here, we confirm our earlier suggestion that the higher spontaneous induction frequency of Stx-encoding prophage is a consequence, in part, of lower intracellular repressor levels in STEC strains versus non-STEC strains. We also show that this lowered intracellular repressor concentration is a consequence of the utilization of alternative binding/regulatory strategies by the phage repressor. We suggest that a higher spontaneous induction frequency would lead to increased virulence.


Assuntos
Prófagos/genética , Toxina Shiga/genética , Escherichia coli Shiga Toxigênica/virologia , Bacteriófagos/genética , Escherichia coli Shiga Toxigênica/patogenicidade , Transcrição Gênica , Virulência
8.
FEMS Microbiol Ecol ; 93(4)2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28334205

RESUMO

The microbial communities in natural environments such as soil, pond water, or animal rumens are composed of a diverse mixture of bacteria and protozoa including ciliates or flagellates. In such microbiomes, a major source of bacterial mortality is grazing by phagocytic protists. Many protists are omnivorous heterotrophs, feeding on a range of different bacterial species. Due to this indiscriminate feeding, different bacterial species can assemble together in the same phagocytic vesicles where they can potentially exchange genetic material. Here we show that Tetrahymena thermophila imports and accumulates phage donor and recipient bacterial strains in its phagocytic vesicles and that under laboratory conditions the ingested bacteria remain viable for ≥2 h. Prophages in the ingested bacteria induce immediately after ingestion, and the released phages are concentrated in the phagocytic vesicles of the ciliate. These phages retain their ability to infect phage-susceptible bacterial strains. As a consequence of being confined within the phagosome, the frequency of lysogen formation in these vesicles increases 6-fold as compared with the bulk solution. Collectively, these observations suggest that T. thermophila aids in dissemination of bacteriophages by accumulating susceptible bacteria and phages in their phagocytic vesicles.


Assuntos
Bacteriófagos/fisiologia , Animais , Bactérias/genética , Bacteriófagos/genética , Ecologia , Eucariotos , Água Doce , Fagocitose , Tetrahymena thermophila
9.
Toxins (Basel) ; 8(4): 96, 2016 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-27043626

RESUMO

Phages 933W, BAA2326, 434, and λ are evolutionarily-related temperate lambdoid phages that infect Escherichia coli. Although these are highly-similar phages, BAA2326 and 933W naturally encode Shiga toxin 2 (Stx⁺), but phage 434 and λ do not (Stx(-)). Previous reports suggest that the 933W Stx⁺ prophage forms less stable lysogens in E. coli than does the Stx(-) prophages λ, P22, and 434. The higher spontaneous induction frequency of the Stx⁺ prophage may be correlated with both virulence and dispersion of the Stx2-encoding phage. Here, we examined the hypothesis that lysogen instability is a common feature of Stx⁺ prophages. We found in both the absence and presence of prophage inducers (DNA damaging agents, salts), the Stx⁺ prophages induce at higher frequencies than do Stx(-) prophages. The observed instability of Stx⁺ prophages does not appear to be the result of any differences in phage development properties between Stx⁺ and Stx(-) phages. Our results indicate that differential stability of Stx⁺ and Stx(-) prophages results from both RecA-dependent and RecA-independent effects on the intracellular concentration of the respective cI repressors.


Assuntos
Bacteriófago lambda/fisiologia , Prófagos/fisiologia , Toxina Shiga II/genética , Bacteriófago lambda/genética , Escherichia coli/virologia , Lisogenia , Prófagos/genética
10.
Cell Microbiol ; 18(10): 1459-70, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26990156

RESUMO

Predation by phagocytic predators is a major source of bacterial mortality. The first steps in protozoan predation are recognition and consumption of their bacterial prey. However, the precise mechanisms governing prey recognition and phagocytosis by protists, and the identities of the molecular and cellular factors involved in these processes are, as yet, ill-characterized. Here, we show that that the ability of the phagocytic bacterivorous amoebae, Acanthamoeba castellanii, to recognize and internalize Escherichia coli, a bacterial prey, varies with LPS structure and composition. The presence of an O-antigen carbohydrate is not required for uptake of E. coli by A. castellanii. However, O1-antigen types, not O157 O-antigen types, inhibit recognition and uptake of bacteria by amoeba. This finding implies that O-antigen may function as an antipredator defence molecule. Recognition and uptake of E. coli by A. castellanii is mediated by the interaction of mannose-binding protein located on amoebae's surface with LPS carbohydrate. Phagocytic mammalian cells also use mannose-binding lectins to recognize and/or mediate phagocytosis of E. coli. Nonetheless, A. castellanii's mannose binding protein apparently displays no sequence similarity with any known metazoan mannose binding protein. Hence, the similarity in bacterial recognition mechanisms of amoebae and mammalian phagocytes may be a result of convergent evolution.


Assuntos
Acanthamoeba castellanii/microbiologia , Escherichia coli O157/fisiologia , Acanthamoeba castellanii/imunologia , Acanthamoeba castellanii/metabolismo , Células Cultivadas , Interações Hospedeiro-Patógeno , Lipopolissacarídeos/farmacologia , Lectina de Ligação a Manose/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA