Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Cent Sci ; 9(4): 836-843, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37122445

RESUMO

We describe the development of the practical manufacturing of Ensitrelvir, which was discovered as a SARS-CoV-2 antiviral candidate. Scalable synthetic methods of indazole, 1,2,4-triazole and 1,3,5-triazinone structures were established, and convergent couplings of these fragments enabled the development of a concise and efficient scale-up process to Ensitrelvir. In this process, introducing a meta-cresolyl moiety successfully enhanced the stability of intermediates. Compared to the initial route at the early research and development stage, the overall yield of the longest linear sequence (6 steps) was improved by approximately 7-fold. Furthermore, 9 out of the 12 isolated intermediates were crystallized directly from each reaction mixture without any extractive workup (direct isolation). This led to an efficient and environmentally friendly manufacturing process that minimizes waste of organic solvents, reagents, and processing time. This practical process for manufacturing Ensitrelvir should contribute to protection against COVID-19.

2.
J Med Chem ; 65(9): 6499-6512, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35352927

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in millions of deaths and threatens public health and safety. Despite the rapid global spread of COVID-19 vaccines, effective oral antiviral drugs are urgently needed. Here, we describe the discovery of S-217622, the first oral noncovalent, nonpeptidic SARS-CoV-2 3CL protease inhibitor clinical candidate. S-217622 was discovered via virtual screening followed by biological screening of an in-house compound library, and optimization of the hit compound using a structure-based drug design strategy. S-217622 exhibited antiviral activity in vitro against current outbreaking SARS-CoV-2 variants and showed favorable pharmacokinetic profiles in vivo for once-daily oral dosing. Furthermore, S-217622 dose-dependently inhibited intrapulmonary replication of SARS-CoV-2 in mice, indicating that this novel noncovalent inhibitor could be a potential oral agent for treating COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Vacinas contra COVID-19 , Proteases 3C de Coronavírus , Humanos , Camundongos , Inibidores de Proteases/farmacologia , Inibidores de Proteases/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...