Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Neurooncol Adv ; 6(1): vdad165, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38213834

RESUMO

Background: The most prevalent cancer treatments cause cell death through DNA damage. However, DNA damage response (DDR) repair pathways, initiated by tumor cells, can withstand the effects of anticancer drugs, providing justification for combining DDR inhibitors with DNA-damaging anticancer treatments. Methods: Cell viability assays were performed with CellTiter-Glo assay. DNA damage was evaluated using Western blotting analysis. RNA-seq and single-cell level expression were used to identify the DDR signatures. In vivo, studies were conducted in mice to determine the effect of ATris on TMZ sensitization. Results: We found a subpopulation of glioma sphere-forming cells (GSCs) with substantial synergism with temozolomide (TMZ) using a panel of 3 clinical-grade ataxia-telangiectasia- and Rad3-related kinase inhibitors (ATRis), (elimusertib, berzosertib, and ceralasertib). Interestingly, most synergistic cell lines had O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation, indicating that ATRi mainly benefits tumors with no MGMT repair. Further, TMZ activated the ATR-checkpoint kinase 1 (Chk1) axis in an MGMT-dependent way. TMZ caused ATR-dependent Chk1 phosphorylation and DNA double-strand breaks as shown by increased γH2AX. Increased DNA damage and decreased Chk1 phosphorylation were observed upon the addition of ATRis to TMZ in MGMT-methylated (MGMT-) GSCs. TMZ also improved sensitivity to ATRis in vivo, as shown by increased mouse survival with the TMZ and ATRi combination treatment. Conclusions: This research provides a rationale for selectively targeting MGMT-methylated cells using ATRis and TMZ combination. Overall, we believe that MGMT methylation status in GBM could serve as a robust biomarker for patient selection for ATRi combined with TMZ.

2.
Neurooncol Adv ; 5(1): vdad132, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38130900

RESUMO

Background: Epidermal growth factor receptor (EGFR) amplification is found in nearly 40%-50% of glioblastoma cases. Several EGFR inhibitors have been tested in glioblastoma but have failed to demonstrate long-term therapeutic benefit, presumably because of acquired resistance. Targeting EGFR downstream signaling with mitogen-activated protein kinase kinase 1 and 2 (MEK1/2) inhibitors would be a more effective approach to glioblastoma treatment. We tested the therapeutic potential of MEK1/2 inhibitors in glioblastoma using 3D cultures of glioma stem-like cells (GSCs) and mouse models of glioblastoma. Methods: Several MEK inhibitors were screened in an unbiased high-throughput platform using GSCs. Cell death was evaluated using flow cytometry and Western blotting (WB) analysis. RNA-seq, real-time quantitative polymerase chain reaction, immunofluorescence, and WB analysis were used to identify and validate neuronal differentiation. Results: Unbiased screening of multiple MEK inhibitors in GSCs showed antiproliferative and apoptotic cell death in sensitive cell lines. An RNA-seq analysis of cells treated with trametinib, a potent MEK inhibitor, revealed upregulation of neurogenesis and neuronal differentiation genes, such as achaete-scute homolog 1 (ASCL1), delta-like 3 (DLL3), and neurogenic differentiation 4 (NeuroD4). We validated the neuronal differentiation phenotypes in vitro and in vivo using selected differentiation markers (ß-III-tubulin, ASCL1, DLL3, and NeuroD4). Oral treatment with trametinib in an orthotopic GSC xenograft model significantly improved animal survival, with 25%-30% of mice being long-term survivors. Conclusions: Our findings demonstrated that MEK1/2 inhibition promotes neuronal differentiation in glioblastoma, a potential additional mechanism of action of MEK1/2 inhibitors. Thus, MEK inhibitors could be efficacious in glioblastoma patients with activated EGFR/MAPK signaling.

3.
Neuro Oncol ; 24(10): 1712-1725, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-35474131

RESUMO

BACKGROUND: Epidermal growth factor receptor (EGFR) amplification and TP53 mutation are the two most common genetic alterations in glioblastoma multiforme (GBM). A comprehensive analysis of the TCGA GBM database revealed a subgroup with near mutual exclusivity of EGFR amplification and TP53 mutations indicative of a role of EGFR in regulating wild-type-p53 (wt-p53) function. The relationship between EGFR amplification and wt-p53 function remains undefined and this study describes the biological significance of this interaction in GBM. METHODS: Mass spectrometry was used to identify EGFR-dependent p53-interacting proteins. The p53 and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) interaction was detected by co-immunoprecipitation. We used CRISPR-Cas9 gene editing to knockout EGFR and DNA-PKcs and the Edit-R CRIPSR-Cas9 system for conditional knockout of EGFR. ROS activity was measured with a CM-H2DCFDA probe, and real-time PCR was used to quantify expression of p53 target genes. RESULTS: Using glioma sphere-forming cells (GSCs), we identified, DNA-PKcs as a p53 interacting protein that functionally inhibits p53 activity. We demonstrate that EGFR knockdown increased wt-p53 transcriptional activity, which was associated with decreased binding between p53 and DNA-PKcs. We further show that inhibition of DNA-PKcs either by siRNA or an inhibitor (nedisertib) increased wt-p53 transcriptional activity, which was not enhanced further by EGFR knockdown, indicating that EGFR suppressed wt-p53 activity through DNA-PKcs binding with p53. Finally, using conditional EGFR-knockout GSCs, we show that depleting EGFR increased animal survival in mice transplanted with wt-p53 GSCs. CONCLUSION: This study demonstrates that EGFR signaling inhibits wt-p53 function in GBM by promoting an interaction between p53 and DNA-PKcs.


Assuntos
Glioblastoma , Glioma , Animais , DNA , Proteína Quinase Ativada por DNA/genética , Proteína Quinase Ativada por DNA/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Glioblastoma/metabolismo , Camundongos , Piridazinas , Quinazolinas , RNA Interferente Pequeno , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
4.
Neurooncol Adv ; 3(1): vdab015, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33738447

RESUMO

Glioblastoma (GBM), the most aggressive primary brain tumor, has a dismal prognosis. Despite our growing knowledge of genomic and epigenomic alterations in GBM, standard therapies and outcomes have not changed significantly in the past two decades. There is therefore an urgent unmet need to develop novel therapies for GBM. The inter- and intratumoral heterogeneity of GBM, inadequate drug concentrations in the tumor owing to the blood-brain barrier, redundant signaling pathways contributing to resistance to conventional therapies, and an immunosuppressive tumor microenvironment, have all hindered the development of novel therapies for GBM. Given the high frequency of DNA damage pathway alterations in GBM, researchers have focused their efforts on pharmacologically targeting key enzymes, including poly(ADP-ribose) polymerase (PARP), DNA-dependent protein kinase, ataxia telangiectasia-mutated, and ataxia telangiectasia and Rad3-related. The mainstays of GBM treatment, ionizing radiation and alkylating chemotherapy, generate DNA damage that is repaired through the upregulation and activation of DNA damage response (DDR) enzymes. Therefore, the use of PARP and other DDR inhibitors to render GBM cells more vulnerable to conventional treatments is an area of intense investigation. In this review, we highlight the growing body of data behind DDR inhibitors in GBM, with a focus on putative predictive biomarkers of response. We also discuss the challenges involved in the successful development of DDR inhibitors for GBM, including the intracranial location and predicted overlapping toxicities of DDR agents with current standards of care, and propose promising strategies to overcome these hurdles.

5.
Nat Commun ; 12(1): 139, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420056

RESUMO

Active telomerase is essential for stem cells and most cancers to maintain telomeres. The enzymatic activity of telomerase is related but not equivalent to the expression of TERT, the catalytic subunit of the complex. Here we show that telomerase enzymatic activity can be robustly estimated from the expression of a 13-gene signature. We demonstrate the validity of the expression-based approach, named EXTEND, using cell lines, cancer samples, and non-neoplastic samples. When applied to over 9,000 tumors and single cells, we find a strong correlation between telomerase activity and cancer stemness. This correlation is largely driven by a small population of proliferating cancer cells that exhibits both high telomerase activity and cancer stemness. This study establishes a computational framework for quantifying telomerase enzymatic activity and provides new insights into the relationships among telomerase, cancer proliferation, and stemness.


Assuntos
Biologia Computacional/métodos , Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Telomerase/metabolismo , Algoritmos , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Conjuntos de Dados como Assunto , Ensaios Enzimáticos , Humanos , Neoplasias/patologia , Células-Tronco Neoplásicas/metabolismo , Regiões Promotoras Genéticas , RNA-Seq , Análise de Célula Única , Homeostase do Telômero , Sequenciamento do Exoma
6.
Neuro Oncol ; 23(6): 920-931, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33433610

RESUMO

BACKGROUND: Temozolomide (TMZ) resistance in glioblastoma multiforme (GBM) is mediated by the DNA repair protein O6-methylguanine DNA methyltransferase (MGMT). MGMT promoter methylation (occurs in about 40% of patients) is associated with loss of MGMT expression (MGMT-) that compromises DNA repair, leading to a favorable response to TMZ therapy. The 60% of patients with unmethylated MGMT (MGMT+) GBM experience resistance to TMZ; in these patients, understanding the mechanism of MGMT-mediated repair and modulating MGMT activity may lead to enhanced TMZ activity. Here, we report a novel mode of regulation of MGMT protein activity by poly(ADP-ribose) polymerase (PARP). METHODS: MGMT-PARP interaction was detected by co-immunoprecipitation. PARylation of MGMT and PARP was detected by co-immunoprecipitation with anti-PAR antibody. O6-methylguanine (O6-MetG) adducts were quantified by immunofluorescence assay. In vivo studies were conducted in mice to determine the effectiveness of PARP inhibition in sensitizing GBM to TMZ. RESULTS: We demonstrated that PARP physically binds with MGMT and PARylates MGMT in response to TMZ treatment. In addition, PARylation of MGMT by PARP is required for MGMT binding to chromatin to enhance the removal of O6-MetG adducts from DNA after TMZ treatment. PARP inhibitors reduced PARP-MGMT binding and MGMT PARylation, silencing MGMT activity to repair O6-MetG. PARP inhibition restored TMZ sensitivity in vivo in MGMT-expressing GBM. CONCLUSION: This study demonstrated that PARylation of MGMT by PARP is critical for repairing TMZ-induced O6-MetG, and inhibition of PARylation by PARP inhibitor reduces MGMT function rendering sensitization to TMZ, providing a rationale for combining PARP inhibitors to sensitize TMZ in MGMT-unmethylated GBM.


Assuntos
Glioblastoma , Animais , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Linhagem Celular Tumoral , Dano ao DNA , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/metabolismo , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Dacarbazina/farmacologia , Dacarbazina/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Guanina/análogos & derivados , Humanos , Camundongos , Poli ADP Ribosilação , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
7.
Clin Cancer Res ; 26(6): 1395-1407, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31852834

RESUMO

PURPOSE: Exploration of novel strategies to extend the benefit of PARP inhibitors beyond BRCA-mutant cancers is of great interest in personalized medicine. Here, we identified EGFR amplification as a potential biomarker to predict sensitivity to PARP inhibition, providing selection for the glioblastoma (GBM) patient population who will benefit from PARP inhibition therapy. EXPERIMENTAL DESIGN: Selective sensitivity to the PARP inhibitor talazoparib was screened and validated in two sets [test set (n = 14) and validation set (n = 13)] of well-characterized patient-derived glioma sphere-forming cells (GSC). FISH was used to detect EGFR copy number. DNA damage response following talazoparib treatment was evaluated by γH2AX and 53BP1 staining and neutral comet assay. PARP-DNA trapping was analyzed by subcellular fractionation. The selective monotherapy of talazoparib was confirmed using in vivo glioma models. RESULTS: EGFR-amplified GSCs showed remarkable sensitivity to talazoparib treatment. EGFR amplification was associated with increased reactive oxygen species (ROS) and subsequent increased basal expression of DNA-repair pathways to counterelevated oxidative stress, and thus rendered vulnerability to PARP inhibition. Following talazoparib treatment, EGFR-amplified GSCs showed enhanced DNA damage and increased PARP-DNA trapping, which augmented the cytotoxicity. EGFR amplification-associated selective sensitivity was further supported by the in vivo experimental results showing that talazoparib significantly suppressed tumor growth in EGFR-amplified subcutaneous models but not in nonamplified models. CONCLUSIONS: EGFR-amplified cells are highly sensitive to talazoparib. Our data provide insight into the potential of using EGFR amplification as a selection biomarker for the development of personalized therapy.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Dano ao DNA , Amplificação de Genes , Glioblastoma/tratamento farmacológico , Estresse Oxidativo , Ftalazinas/farmacologia , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Receptores ErbB/genética , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Masculino , Camundongos , Camundongos Nus , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Esferoides Celulares , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Am J Cancer Res ; 9(11): 2428-2441, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31815044

RESUMO

Glioblastoma multiforme (GBM), the most common type of primary brain tumor, is universally fatal, with a median survival duration ranging from 12-15 months despite maximum treatment efforts. Temozolomide (TMZ) is the current standard of care for GBM patients; however patients usually develop resistance to TMZ and limits its benefit. The identification of novel synergistic targets in GBM will lead to the development of new targeted drugs, which could be combined with broad-spectrum cytotoxic agents. In this study, we used a high-throughput synthetic lethality screen with a pooled short hairpin DNA repair library, in combination with TMZ, to identify targets that will enhance TMZ-induced antitumor effects. Using an unbiased bioinformatical analysis, we identified BRCA1 as a potential promising candidate gene that induced synthetic lethality with TMZ in glioma sphere-forming cells (GSCs). BRCA1 knockdown resulted in antitumor activity with TMZ in P53 wild-type GSCs but not in P53 mutant GSCs. TMZ treatment induced a DNA damage repair response; the activation of BRCA1 DNA repair pathway targets and knockdown of BRCA1, together with TMZ, led to increased DNA damage and cell death in P53 wild-type GSCs. Our study identified BRCA1 as a potential target that sensitizes TMZ-induced cell death in P53 wild-type GBM, suggesting that the combined inhibition of BRCA1 and TMZ treatment will be a successful targeted therapy for GBM patients.

9.
Am J Cancer Res ; 9(8): 1734-1745, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31497354

RESUMO

Glioblastoma (GBM) is the most common and lethal primary intracranial tumor. Aggressive surgical resection plus radiotherapy and temozolomide have prolonged patients' median survival to only 14.6 months. Therefore, there is a critical need to develop novel therapeutic strategies for GBM. In this study, we evaluated the effect of NOTCH signaling intervention by gamma-secretase inhibitors (GSIs) on glioma sphere-forming cells (GSCs). GSI sensitivity exhibited remarkable selectivity among wild-type TP53 (wt-p53) GSCs. GSIs significantly impaired the sphere formation of GSCs harboring wt-p53. We also identified a concurrence between GSI sensitivity, NOTCH1 expression, and wt-p53 activity in GSCs. Through a series of gene editing and drug treatment experiments, we found that wt-p53 did not modulate NOTCH1 pathway, whereas NOTCH1 signaling positively regulated wt-p53 expression and activity in GSCs. Finally, GSIs (targeting NOTCH signaling) synergized with doxorubicin (activating wt-p53) to inhibit proliferation and induce apoptosis in wt-p53 GSCs. Taken together, we identified wt-p53 as a potential marker for GSI sensitivity in GSCs. Combining GSI with doxorubicin synergistically inhibited the proliferation and survival of GSCs harboring wt-p53.

10.
Cancer Res ; 79(19): 5088-5101, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31416846

RESUMO

PI3K-targeting therapy represents one of the most sought-after therapies for glioblastoma (GBM). Several small-molecule inhibitors have been evaluated in clinical trials, however, the emergence of resistance limits treatment potential. Here, we generated a patient-derived glioma sphere-forming cell (GSC) xenograft model resistant to the PI3K-specific inhibitor BKM-120. Integrated RNA sequencing and high-throughput drug screening revealed that the Aurora A kinase (Aurora A)/Polo-like kinase 1 (PLK1)/cyclin-dependent kinase 1 (CDK1) signaling pathway was the main driver of PI3K inhibitor resistance in the resistant xenografts. Aurora kinase was upregulated and pCDK1 was downregulated in resistant tumors from both xenografts and tumor tissues from patients treated with the PI3K inhibitor. Mechanistically, the tyrosine kinase receptor Tie2 physically interacted with FGFR1, promoting STAT3 phosphorylation and binding to the AURKA promoter, which increased Aurora A expression in resistant GSCs. Concurrent inhibition of Aurora A and PI3K signaling overcame PI3K inhibitor-induced resistance. This study offers a proof of concept to target PI3K and the collateral-activated pathway to improve GBM therapy. SIGNIFICANCE: These findings provide novel insights into the mechanisms of PI3K inhibitor resistance in glioblastoma.


Assuntos
Resistencia a Medicamentos Antineoplásicos/fisiologia , Glioblastoma/patologia , Transdução de Sinais/fisiologia , Animais , Aurora Quinase A/metabolismo , Proteína Quinase CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos Nus , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor TIE-2/metabolismo , Regulação para Cima , Quinase 1 Polo-Like
11.
J Clin Oncol ; 37(9): 741-750, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30715997

RESUMO

PURPOSE: Phosphatidylinositol 3-kinase (PI3K) signaling is highly active in glioblastomas. We assessed pharmacokinetics, pharmacodynamics, and efficacy of the pan-PI3K inhibitor buparlisib in patients with recurrent glioblastoma with PI3K pathway activation. METHODS: This study was a multicenter, open-label, multi-arm, phase II trial in patients with PI3K pathway-activated glioblastoma at first or second recurrence. In cohort 1, patients scheduled for re-operation after progression received buparlisib for 7 to 13 days before surgery to evaluate brain penetration and modulation of the PI3K pathway in resected tumor tissue. In cohort 2, patients not eligible for re-operation received buparlisib until progression or unacceptable toxicity. Once daily oral buparlisib 100 mg was administered on a continuous 28-day schedule. Primary end points were PI3K pathway inhibition in tumor tissue and buparlisib pharmacokinetics in cohort 1 and 6-month progression-free survival (PFS6) in cohort 2. RESULTS: Sixty-five patients were treated (cohort 1, n = 15; cohort 2, n = 50). In cohort 1, reduction of phosphorylated AKTS473 immunohistochemistry score was achieved in six (42.8%) of 14 patients, but effects on phosphoribosomal protein S6S235/236 and proliferation were not significant. Tumor-to-plasma drug level was 1.0. In cohort 2, four (8%) of 50 patients reached 6-month PFS6, and the median PFS was 1.7 months (95% CI, 1.4 to 1.8 months). The most common grade 3 or greater adverse events related to treatment were lipase elevation (n = 7 [10.8%]), fatigue (n = 4 [6.2%]), hyperglycemia (n = 3 [4.6%]), and elevated ALT (n = 3 [4.6%]). CONCLUSION: Buparlisib had minimal single-agent efficacy in patients with PI3K-activated recurrent glioblastoma. Although buparlisib achieved significant brain penetration, the lack of clinical efficacy was explained by incomplete blockade of the PI3K pathway in tumor tissue. Integrative results suggest that additional study of PI3K inhibitors that achieve more-complete pathway inhibition may still be warranted.


Assuntos
Aminopiridinas/uso terapêutico , Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Morfolinas/uso terapêutico , Terapia Neoadjuvante , Recidiva Local de Neoplasia , Fosfatidilinositol 3-Quinase/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Adulto , Idoso , Idoso de 80 Anos ou mais , Aminopiridinas/efeitos adversos , Aminopiridinas/farmacocinética , Antineoplásicos/efeitos adversos , Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/patologia , Quimioterapia Adjuvante , Progressão da Doença , Ativação Enzimática , Feminino , Glioblastoma/enzimologia , Glioblastoma/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Morfolinas/efeitos adversos , Morfolinas/farmacocinética , Terapia Neoadjuvante/efeitos adversos , Inibidores de Fosfoinositídeo-3 Quinase/efeitos adversos , Inibidores de Fosfoinositídeo-3 Quinase/farmacocinética , Intervalo Livre de Progressão , Fatores de Tempo
12.
Neuro Oncol ; 20(1): 78-91, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29016926

RESUMO

Background: Oncogenic activation of phosphatidylinositol-3 kinase (PI3K) signaling plays a pivotal role in the development of glioblastoma (GBM). However, pharmacological inhibition of PI3K has so far not been therapeutically successful due to adaptive resistance through a rapid rewiring of cancer cell signaling. Here we identified that WEE1 is activated after transient exposure to PI3K inhibition and confers resistance to PI3K inhibition in GBM. Methods: Patient-derived glioma-initiating cells and established GBM cells were treated with PI3K inhibitor or WEE1 inhibitor alone or in combination, and cell proliferation was evaluated by CellTiter-Blue assay. Cell apoptosis was analyzed by TUNEL, annexin V staining, and blotting of cleaved caspase-3 and cleaved poly(ADP-ribose) polymerase. Both subcutaneous xenograft and orthotropic xenograft studies were conducted to evaluate the effects of the combination on tumorigenesis; the tumor growth was monitored by bioluminescence imaging, and tumor tissue was analyzed by immunohistochemistry to validate signaling changes. Results: PI3K inhibition activates WEE1 kinase, which in turn phosphorylates cell division control protein 2 homolog (Cdc2) at Tyr15 and inhibits Cdc2 activity, leading to G2/M arrest in a p53-independent manner. WEE1 inhibition abrogated the G2/M arrest and propelled cells to prematurely enter into mitosis and consequent cell death through mitotic catastrophe and apoptosis. Additionally, combination treatment significantly suppressed tumor growth in a subcutaneous model but not in an intracranial model due to limited blood-brain barrier penetration. Conclusions: Our findings highlight WEE1 as an adaptive resistant gene activated after PI3K inhibition, and inhibition of WEE1 potentiated the effectiveness of PI3K targeted inhibition, suggesting that a combinational inhibition of WEE1 and PI3K might allow successful targeted therapy in GBM.


Assuntos
Neoplasias Encefálicas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Glioblastoma/metabolismo , Proteínas Nucleares/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Tirosina Quinases/metabolismo , Animais , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Inibidores Enzimáticos/uso terapêutico , Glioblastoma/tratamento farmacológico , Humanos , Camundongos Nus , Fosforilação , Proteína Supressora de Tumor p53/metabolismo
13.
Proc Natl Acad Sci U S A ; 114(43): E9086-E9095, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-29073105

RESUMO

An integrated genomic and functional analysis to elucidate DNA damage signaling factors promoting self-renewal of glioma stem cells (GSCs) identified proliferating cell nuclear antigen (PCNA)-associated factor (PAF) up-regulation in glioblastoma. PAF is preferentially overexpressed in GSCs. Its depletion impairs maintenance of self-renewal without promoting differentiation and reduces tumor-initiating cell frequency. Combined transcriptomic and metabolomic analyses revealed that PAF supports GSC maintenance, in part, by influencing DNA replication and pyrimidine metabolism pathways. PAF interacts with PCNA and regulates PCNA-associated DNA translesion synthesis (TLS); consequently, PAF depletion in combination with radiation generated fewer tumorspheres compared with radiation alone. Correspondingly, pharmacological impairment of DNA replication and TLS phenocopied the effect of PAF depletion in compromising GSC self-renewal and radioresistance, providing preclinical proof of principle that combined TLS inhibition and radiation therapy may be a viable therapeutic option in the treatment of glioblastoma multiforme (GBM).


Assuntos
Neoplasias Encefálicas/radioterapia , Proteínas de Transporte/genética , Glioblastoma/radioterapia , Células-Tronco Neoplásicas/efeitos da radiação , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Proteínas de Transporte/metabolismo , Dano ao DNA/genética , Dano ao DNA/efeitos da radiação , Reparo do DNA/genética , Reparo do DNA/efeitos da radiação , Replicação do DNA/efeitos dos fármacos , Proteínas de Ligação a DNA , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Glioblastoma/genética , Glioblastoma/mortalidade , Glioblastoma/patologia , Proteínas de Fluorescência Verde/genética , Humanos , Camundongos SCID , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Pirimidinas/biossíntese , Tolerância a Radiação , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Oncotarget ; 8(33): 54285-54296, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28903341

RESUMO

Genomic, transcriptional, and proteomic analyses of brain tumors reveal that subtypes differ in their pathway activity, progression, and response to therapy. We performed an expression profiling of Glioma Initiating Cells (GICs) and comparative analysis between different groups of GICs indicates major variations in gene expression. Hierarchical clustering analysis revealed groups of GICs reflecting their heterogeneity, and among some of the genes as major regulators of mesenchymal phenotype, we identified ABOBEC3G as one of the most discriminating genes in mesenchymal group. ABOBEC3G revealed a strong correlation with overall survival in TCGA GBM patient cohorts. APOBEC3G regulates cell invasion and silencing of this gene in GICs inhibits cell invasion and also glioma sphere initiation. APOBEC3G controls invasion through TGFß/Smad2 pathway by regulating Smad2 target genes Thrombospondin 1, matrix metallopeptidase 2 and TIMP metallopeptidase inhibitor 1. We also show that targeting APOBEC3G can sensitize cancer cells to radiation induced cell death by attenuating activation of the DNA repair pathway. This response is mainly shown by decreased pChk2 expression in knockdown APOBEC3G cells. Taken together, we show that APOBEC3G gene is a mesenchymal enriched gene that controls invasion and knockdown of APOBEC3G sensitizes cells to radiation induced cell death, suggesting that APOBEC3G can be considered for use in stratifying patients with GBM for prognostic considerations.

15.
Oncotarget ; 8(13): 21741-21753, 2017 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-28423515

RESUMO

Glioblastoma (GBM) is an ideal candidate disease for signal transduction targeted therapy because the majority of these tumors harbor genetic alterations that result in aberrant activation of growth factor signaling pathways. Loss of heterozygosity of chromosome 10, mutations in the tumor suppressor gene PTEN, and PI3K mutations are molecular hallmarks of GBM and indicate poor prognostic outcomes in many cancers. Consequently, inhibiting the PI3K pathway may provide therapeutic benefit in these cancers. PI3K inhibitors generally block proliferation rather than induce apoptosis. To restore the sensitivity of GBM to apoptosis induction, targeted agents have been combined with conventional therapy. However, the molecular heterogeneity and infiltrative nature of GBM make it resistant to traditional single agent therapy. Our objectives were to test a dual PI3K/mTOR inhibitor that may cross the blood-brain barrier (BBB) and provide the rationale for using this inhibitor in combination regimens to chemotherapy-induced synergism in GBM. Here we report the preclinical potential of a novel, orally bioavailable PI3K/mTOR dual inhibitor, DS7423 (hereafter DS), in in-vitro and in-vivo studies. DS was tested in mice, and DS plasma and brain concentrations were determined. DS crossed the BBB and led to potent suppression of PI3K pathway biomarkers in the brain. The physiologically relevant concentration of DS was tested in 9 glioma cell lines and 22 glioma-initiating cell (GIC) lines. DS inhibited the growth of glioma tumor cell lines and GICs at mean 50% inhibitory concentration values of less than 250 nmol/L. We found that PI3K mutations and PTEN alterations were associated with cellular response to DS treatment; with preferential inhibition of cell growth in PI3KCA-mutant and PTEN altered cell lines. DS showed efficacy and survival benefit in the U87 and GSC11 orthotopic models of GBM. Furthermore, administration of DS enhanced the antitumor efficacy of temozolomide against GBM in U87 glioma models, which shows that PI3K/mTOR inhibitors may enhance alkylating agent-mediated cytotoxicity, providing a novel regimen for the treatment of GBM. Our present findings establish that DS can specifically be used in patients who have PI3K pathway activation and/or loss of PTEN function. Further studies are warranted to determine the potential of DS for glioma treatment.


Assuntos
Adenina/análogos & derivados , Antineoplásicos/farmacologia , Neoplasias Encefálicas/patologia , Glioma/patologia , PTEN Fosfo-Hidrolase/antagonistas & inibidores , Inibidores de Fosfoinositídeo-3 Quinase , Piperazinas/farmacologia , Adenina/farmacologia , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Western Blotting , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Glioma/genética , Humanos , Concentração Inibidora 50 , Masculino , Camundongos , Camundongos Nus , Inibidores de Proteínas Quinases/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Mol Cancer Ther ; 15(7): 1656-68, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27196759

RESUMO

Glioblastoma (GBM) represents a compelling disease for kinase inhibitor therapy because most of these tumors harbor genetic alterations that result in aberrant activation of growth factor-signaling pathways. The PI3K/mammalian target of the rapamycin (mTOR) pathway is dysregulated in over 50% of human GBM but remains a challenging clinical target. Inhibitors against PI3K/mTOR mediators have limited clinical efficacy as single agents. We investigated potential bypass mechanisms to PI3K/mTOR inhibition using gene expression profiling before and after PI3K inhibitor treatment by Affymetrix microarrays. Mitogen- and stress-activated protein kinase 1 (MSK1) was markedly induced after PI3K/mTOR inhibitor treatment and disruption of MSK1 by specific shRNAs attenuated resistance to PI3K/mTOR inhibitors in glioma-initiating cells (GIC). Further investigation showed that MSK1 phosphorylates ß-catenin and regulates its nuclear translocation and transcriptional activity. The depletion of ß-catenin potentiated PI3K/mTOR inhibitor-induced cytotoxicity and the inhibition of MSK1 synergized with PI3K/mTOR inhibitors to extend survival in an intracranial animal model and decreased phosphorylation of ß-catenin at Ser(552) These observations suggest that MSK1/ß-catenin signaling serves as an escape survival signal upon PI3K/mTOR inhibition and provides a strong rationale for the combined use of PI3K/mTOR and MSK1/ß-catenin inhibition to induce lethal growth inhibition in human GBM. Mol Cancer Ther; 15(7); 1656-68. ©2016 AACR.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Encefálicas/metabolismo , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , beta Catenina/metabolismo , Animais , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Análise por Conglomerados , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/genética , Expressão Gênica , Perfilação da Expressão Gênica , Glioblastoma/genética , Humanos , Camundongos , Modelos Biológicos , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Serina-Treonina Quinases TOR/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Stem Cells ; 32(1): 301-12, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24038660

RESUMO

Genomic, transcriptional, and proteomic analyses of brain tumors reveal subtypes that differ in pathway activity, progression, and response to therapy. However, a number of small molecule inhibitors under development vary in strength of subset and pathway-specificity, with molecularly targeted experimental agents tending toward stronger specificity. The Notch signaling pathway is an evolutionarily conserved pathway that plays an important role in multiple cellular and developmental processes. We investigated the effects of Notch pathway inhibition in glioma tumor-initiating cell (GIC, hereafter GIC) populations using γ secretase inhibitors. Drug cytotoxicity testing of 16 GICs showed differential growth responses to the inhibitors, stratifying GICs into responders and nonresponders. Responder GICs had an enriched proneural gene signature in comparison to nonresponders. Also gene set enrichment analysis revealed 17 genes set representing active Notch signaling components NOTCH1, NOTCH3, HES1, MAML1, DLL-3, JAG2, and so on, enriched in responder group. Analysis of The Cancer Genome Atlas expression dataset identified a group (43.9%) of tumors with proneural signature showing high Notch pathway activation suggesting γ secretase inhibitors might be of potential value to treat that particular group of proneural glioblastoma (GBM). Inhibition of Notch pathway by γ secretase inhibitor treatment attenuated proliferation and self-renewal of responder GICs and induces both neuronal and astrocytic differentiation. In vivo evaluation demonstrated prolongation of median survival in an intracranial mouse model. Our results suggest that proneural GBM characterized by high Notch pathway activation may exhibit greater sensitivity to γ secretase inhibitor treatment, holding a promise to improve the efficiency of current glioma therapy.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Glioma/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Receptores Notch/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Processos de Crescimento Celular/efeitos dos fármacos , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Glioma/genética , Glioma/metabolismo , Glioma/patologia , Humanos , Camundongos , Camundongos Nus , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Inibidores de Proteases , Receptores Notch/genética , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Genes Dev ; 27(13): 1462-72, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23796897

RESUMO

With the advent of high-throughput sequencing technologies, much progress has been made in the identification of somatic structural rearrangements in cancer genomes. However, characterization of the complex alterations and their associated mechanisms remains inadequate. Here, we report a comprehensive analysis of whole-genome sequencing and DNA copy number data sets from The Cancer Genome Atlas to relate chromosomal alterations to imbalances in DNA dosage and describe the landscape of intragenic breakpoints in glioblastoma multiforme (GBM). Gene length, guanine-cytosine (GC) content, and local presence of a copy number alteration were closely associated with breakpoint susceptibility. A dense pattern of repeated focal amplifications involving the murine double minute 2 (MDM2)/cyclin-dependent kinase 4 (CDK4) oncogenes and associated with poor survival was identified in 5% of GBMs. Gene fusions and rearrangements were detected concomitant within the breakpoint-enriched region. At the gene level, we noted recurrent breakpoints in genes such as apoptosis regulator FAF1. Structural alterations of the FAF1 gene disrupted expression and led to protein depletion. Restoration of the FAF1 protein in glioma cell lines significantly increased the FAS-mediated apoptosis response. Our study uncovered a previously underappreciated genomic mechanism of gene deregulation that can confer growth advantages on tumor cells and may generate cancer-specific vulnerabilities in subsets of GBM.


Assuntos
Quebra Cromossômica , Glioblastoma/genética , Glioblastoma/mortalidade , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas Reguladoras de Apoptose , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo , Variações do Número de Cópias de DNA/genética , Fusão Gênica/genética , Rearranjo Gênico/genética , Instabilidade Genômica/genética , Glioblastoma/patologia , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Análise de Sobrevida
20.
Neuro Oncol ; 15(7): 829-39, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23502430

RESUMO

BACKGROUND: The Cancer Genome Atlas (TCGA) project is a large-scale effort with the goal of identifying novel molecular aberrations in glioblastoma (GBM). METHODS: Here, we describe an in-depth analysis of gene expression data and copy number aberration (CNA) data to classify GBMs into prognostic groups to determine correlates of subtypes that may be biologically significant. RESULTS: To identify predictive survival models, we searched TCGA in 173 patients and identified 42 probe sets (P = .0005) that could be used to divide the tumor samples into 3 groups and showed a significantly (P = .0006) improved overall survival. Kaplan-Meier plots showed that the median survival of group 3 was markedly longer (127 weeks) than that of groups 1 and 2 (47 and 52 weeks, respectively). We then validated the 42 probe sets to stratify the patients according to survival in other public GBM gene expression datasets (eg, GSE4290 dataset). An overall analysis of the gene expression and copy number aberration using a multivariate Cox regression model showed that the 42 probe sets had a significant (P < .018) prognostic value independent of other variables. CONCLUSIONS: By integrating multidimensional genomic data from TCGA, we identified a specific survival model in a new prognostic group of GBM and suggest that molecular stratification of patients with GBM into homogeneous subgroups may provide opportunities for the development of new treatment modalities.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Variações do Número de Cópias de DNA/genética , Perfilação da Expressão Gênica , Glioblastoma/genética , RNA Mensageiro/genética , Neoplasias Encefálicas/classificação , Neoplasias Encefálicas/mortalidade , Estudos de Casos e Controles , Biologia Computacional , Bases de Dados Genéticas , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Genômica , Glioblastoma/classificação , Glioblastoma/mortalidade , Humanos , Modelos Estatísticos , Análise de Sequência com Séries de Oligonucleotídeos , Prognóstico , Taxa de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...