Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 47(5): 1271-1274, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35230349

RESUMO

We experimentally demonstrate that 2D Airy wave packets can produce intense curved two-color filaments that emit terahertz (THz) radiation with unique characteristics. Due to the curvature of the plasma channel, THz waves, emitted from different longitudinal regions of the plasma, propagate in different directions resulting in non-concentric THz cones in the far-field. These cones have different cone angles and polarization which we attribute to the way the two-color 2D Airy driving fields are produced in the nonlinear crystal and then propagate to form the curved plasma filament.

2.
Opt Lett ; 47(21): 5445-5448, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37219240

RESUMO

We report the spectral shaping of supercontinuum generation in liquids by employing properly engineered Bessel beams coupled with artificial neural networks. We demonstrate that given a custom spectrum, neural networks are capable of outputting the experimental parameters needed to generate it experimentally.

3.
Opt Lett ; 45(24): 6835-6838, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33325908

RESUMO

We experimentally demonstrate that the terahertz (THz) emission from two-color laser filaments in gases is strongly affected by the pulse repetition rate of the driving laser. We show that at repetition rates above 100 Hz, propagation of every next laser pulse in the pulse train is altered by gas density depressions produced by the preceding laser pulses. As a result, plasma channels at higher repetition rates become shorter, leading to less efficient THz generation. In particular, we observe a 50% decrease in the emitted THz energy when the repetition rate increases from 6 Hz to 6 kHz.

4.
Nat Commun ; 11(1): 292, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31941895

RESUMO

Extreme nonlinear interactions of THz electromagnetic fields with matter are the next frontier in nonlinear optics. However, reaching this frontier in free space is limited by the existing lack of appropriate powerful THz sources. Here, we experimentally demonstrate that two-color filamentation of femtosecond mid-infrared laser pulses at 3.9 µm allows one to generate ultrashort sub-cycle THz pulses with sub-milijoule energy and THz conversion efficiency of 2.36%, resulting in THz field amplitudes above 100 MV cm-1. Our numerical simulations predict that the observed THz yield can be significantly upscaled by further optimizing the experimental setup. Finally, in order to demonstrate the strength of our THz source, we show that the generated THz pulses are powerful enough to induce nonlinear cross-phase modulation in electro-optic crystals. Our work paves the way toward free space extreme nonlinear THz optics using affordable table-top laser systems.

5.
ACS Photonics ; 6(3): 720-727, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30918912

RESUMO

We present an experimental demonstration and interpretation of an ultrafast optically tunable, graphene-based thin film absorption modulator for operation in the THz regime. The graphene-based component consists of a uniform CVD-grown graphene sheet stacked on an SU-8 dielectric substrate that is grounded by a metallic ground plate. The structure shows enhanced absorption originating from constructive interference of the impinging and reflected waves at the absorbing graphene sheet. The modulation of this absorption, which is demonstrated via a THz time-domain spectroscopy setup, is achieved by applying an optical pump signal, which modifies the conductivity of the graphene sheet. We report an ultrafast (on the order of few ps) absorption modulation on the order of 40% upon photoexcitation. Our results provide evidence that the optical pump excitation results in the degradation of the graphene THz conductivity, which is connected with the generation of hot carriers, the increase of the electronic temperature, and the dominant increase of the scattering rate over the carrier concentration as found in highly doped samples.

6.
Phys Rev Lett ; 119(22): 223901, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29286781

RESUMO

We demonstrate both theoretically and experimentally that the harmonics from abruptly autofocusing ring-Airy beams present a surprising property: They preserve the phase distribution of the fundamental beam. Consequently, this "phase memory" imparts to the harmonics the abrupt autofocusing behavior, while, under certain conditions, their foci coincide in space with the one of the fundamental. Experiments agree well with our theoretical estimates and detailed numerical calculations. Our findings open the way for the use of such beams and their harmonics in strong field science.

7.
Nat Commun ; 8(1): 1184, 2017 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-29084961

RESUMO

Generation and application of energetic, broadband terahertz pulses (bandwidth ~0.1-50 THz) is an active and contemporary area of research. The main thrust is toward the development of efficient sources with minimum complexities-a true table-top setup. In this work, we demonstrate the generation of terahertz radiation via ultrashort pulse induced filamentation in liquids-a counterintuitive observation due to their large absorption coefficient in the terahertz regime. The generated terahertz energy is more than an order of magnitude higher than that obtained from the two-color filamentation of air (the most standard table-top technique). Such high terahertz energies would generate electric fields of the order of MV cm-1, which opens the doors for various nonlinear terahertz spectroscopic applications. The counterintuitive phenomenon has been explained via the solution of nonlinear pulse propagation equation in the liquid medium.

8.
Appl Spectrosc ; 67(11): 1264-9, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24160877

RESUMO

Terahertz time-domain spectroscopy (THz-TDS) has been applied for the detection and discrimination of harmful chemical residues in honey. Three antibiotics (sulfapyridine, sulfathiazole, and tetracycline) and two acaricides (coumaphos and amitraz) were characterized in the THz frequency regime between 0.5 THz and 6.0 THz. All chemical substances present distinct absorption peaks. THz transmission measurements of honey mixtures with antibiotics have been performed, revealing that antibiotic residues are traceable in highly absorptive food products, such as honey, at concentrations down to 1% weight percentage, thanks to their THz fingerprints. Moreover, multiple antibiotics were identified in their mixture with honey, pointing out the potential of the technique to be used in the near future as a fast, real-time technique for detecting and discriminating multi-residues strictly related to food safety issues.


Assuntos
Mel/análise , Resíduos de Praguicidas/análise , Espectroscopia Terahertz/métodos , Inocuidade dos Alimentos , Resíduos de Praguicidas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...