Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 13(4)2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-37189406

RESUMO

Incorporation of dietary peptides has been correlated with decreased presence of skeletal abnormalities in marine larvae. In an attempt to clarify the effect of smaller protein fractions on fish larval and post-larval skeleton, we designed three isoenergetic diets with partial substitution of their protein content with 0% (C), 6% (P6) and 12% (P12) shrimp di- and tripeptides. Experimental diets were tested in zebrafish under two regimes, with inclusion (ADF-Artemia and dry feed) or lack (DF-dry feed only) of live food. Results at the end of metamorphosis highlight the beneficial effect of P12 on growth, survival and early skeletal quality when dry diets are provided from first feeding (DF). Exclusive feeding with P12 also increased the musculoskeletal resistance of the post-larval skeleton against the swimming challenge test (SCT). On the contrary, Artemia inclusion (ADF) overruled any peptide effect in total fish performance. Given the unknown species' larval nutrient requirements, a 12% dietary peptide incorporation is proposed for successful rearing without live food. A potential nutritional control of the larval and post-larval skeletal development even in aquaculture species is suggested. Limitations of the current molecular analysis are discussed to enable the future identification of the peptide-driven regulatory pathways.


Assuntos
Ração Animal , Peixe-Zebra , Animais , Ração Animal/análise , Dieta , Peptídeos/farmacologia , Larva
2.
J Fish Dis ; 46(6): 697-705, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36883327

RESUMO

Fish skeletal development has long been correlated with nutritional factors. Lack of zebrafish nutritional standardization, especially during the early stages, decreases the reproducibility of the conducted research. The present study represents an evaluation of four commercial (A, D, zebrafish specific; B, generic for freshwater larvae; C, specific for marine fish larvae) and one experimental (Ctrl) early diets on zebrafish skeletal development. Skeletal abnormalities rates in the different experimental groups were assessed at the end of the larval period (20 days post-fertilization, dpf) and after a swimming challenge test (SCT, 20-24 dpf). At 20 dpf, results revealed a significant effect of diet on the rate of caudal-peduncle scoliosis and gill-cover abnormalities, which were relatively elevated in B and C groups. SCT results focused on swimming-induced lordosis, which was comparatively elevated in diets C and D (83% ± 7% and 75% ± 10%, respectively, vs. 52% ± 18% in diet A). No significant effects of dry diets were observed on the survival and growth rate of zebrafish. Results are discussed with respect to the deferential diet composition between the groups and the species requirements. A potential nutritional control of haemal lordosis in finfish aquaculture is suggested.


Assuntos
Doenças dos Peixes , Lordose , Animais , Peixe-Zebra , Reprodutibilidade dos Testes , Dieta/veterinária , Larva
3.
Fish Physiol Biochem ; 48(6): 1443-1447, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36462100

RESUMO

This study examined whether the aerobic swimming capacity of zebrafish juveniles is affected by the exposure of the yolk-sac larvae to sublethal concentration of Microcystis aeruginosa extract (200 mg dw L-1). Critical swimming speed significantly decreased in the pre-exposed fish (9.2 ± 1.0 vs 11.3 ± 1.4 TL s-1 in the control group). Exposure did not have any significant effects on the shape of the heart ventricle, rate of skeletal abnormalities, and growth or survival rates. Decreased swimming performance due to the early and short exposure to M. aeruginosa could have negative impacts on fish in the wild.


Assuntos
Microcystis , Peixe-Zebra , Animais , Larva , Natação , Saco Vitelino
4.
Int J Mol Sci ; 23(22)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36430357

RESUMO

The massive accumulation of plastics over the decades in the aquatic environment has led to the dispersion of plastic components in aquatic ecosystems, invading the food webs. Plastics fragmented into microplastics can be bioaccumulated by fishes via different exposure routes, causing several adverse effects. In the present study, the dose-dependent cytotoxicity of 8−10 µm polypropylene microplastics (PP-MPs), at concentrations of 1 mg/g (low dose) and 10 mg/g dry food (high dose), was evaluated in the liver and gill tissues of two fish species, the zebrafish (Danio rerio) and the freshwater perch (Perca fluviatilis). According to our results, the inclusion of PP-MPs in the feed of D. rerio and P. fluviatilis hampered the cellular function of the gills and hepatic cells by lipid peroxidation, DNA damage, protein ubiquitination, apoptosis, autophagy, and changes in metabolite concentration, providing evidence that the toxicity of PP-MPs is dose dependent. With regard to the individual assays tested in the present study, the biggest impact was observed in DNA damage, which exhibited a maximum increase of 18.34-fold in the liver of D. rerio. The sensitivity of the two fish species studied differed, while no clear tissue specificity in both fish species was observed. The metabolome of both tissues was altered in both treatments, while tryptophan and nicotinic acid exhibited the greatest decrease among all metabolites in all treatments in comparison to the control. The battery of biomarkers used in the present study as well as metabolomic changes could be suggested as early-warning signals for the assessment of the aquatic environment quality against MPs. In addition, our results contribute to the elucidation of the mechanism induced by nanomaterials on tissues of aquatic organisms, since comprehending the magnitude of their impact on aquatic ecosystems is of great importance.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Microplásticos/toxicidade , Plásticos/metabolismo , Peixe-Zebra/metabolismo , Polipropilenos , Ecossistema , Poluentes Químicos da Água/análise , Água Doce
5.
Sci Rep ; 12(1): 17896, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36284204

RESUMO

Skeletal abnormalities are one of the most important key-performance-indicators (KPIs) in finfish hatcheries. Coping with the problem of skeletal abnormalities relies on the understanding of the link between the variability in the rearing conditions, and the variability in abnormalities incidence. Here, 74 seabream larval populations, from four commercial hatcheries, were examined for the presence of abnormalities and monitored with respect to the applied conditions. The inward folding of gill-cover and pugheadedness were the most frequent abnormalities present, with a mean (± SD) frequency of 11.3 ± 17.9 and 6.0 ± 7.2%, respectively. Other abnormalities were observed at very low mean rates (≤ 1%). A new abnormality type, ray-resorption syndrome, was also found. The recorded rate of normally inflated swimbladder was 92.3 ± 7.4% and mean survival rate was 25.9 ± 21.0%. Classification tree analysis indicated six rearing variables as potentially important predictors for pugheadedness, six variables for caudal-fin abnormalities and 10 variables for survival rate. Complementary genetic analysis, revealed differentiating genetic diversity and significant genetic distances among participating hatcheries, suggestive of the role of company-specific management of genetic resources in KPIs' variability. The results are discussed with respect to their potential use in the control of skeletal abnormalities by commercial hatcheries, as well as for benchmarking among different hatcheries.


Assuntos
Dourada , Animais , Brânquias , Larva
6.
Sci Total Environ ; 830: 154603, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35337874

RESUMO

The built up of microplastic (MPs) remains is shaping a new aquatic habitat and imposes the necessity for research of the effects that these relatively new pollutants exert on organisms, environment, and human health. The purpose of the present study was to verify if there is a particle-size dependence of fish response to MPs. Thus, we exposed two freshwater fish species, the zebrafish (Danio rerio) and perch (Perca fluviatilis) for 21 days to polyethylene microplastics (PE-MPs) sized 10-45 µm and 106-125 µm. Thereafter, in the liver and gills tissues, biochemical and molecular parameters and the metabolic profile were examined. Ex-vivo characterization by ATR-FTIR spectroscopy exhibited increased concentration of 10-45 µm PE-MPs in the liver of the two fish species while 106-125 µm PE-MPs mostly concentrated in fish gills. The penetration of PE-MPs to fish and the induced oxidative stress triggered changes in lipid peroxidation, DNA damage and ubiquitination and furthermore stimulated signal transduction pathways leading to autophagy and apoptosis. The smaller PE-MPs were more potent in inducing alterations to all the latter parameters measured than the larger ones. Tissue response in both fish seems to depend on the parameter measured and does not seem to follow a specific pattern. Our results showed that there is no clear sensitivity of one fish species versus the other, against both sizes of PE-MPs they were exposed. In perch the metabolic changes in gills were distinct to the ones observed in liver, following a size dependent pattern, indicating that stress conditions are generated through different mechanisms. All the parameters employed can be suggested further as biomarkers in biomonitoring studies against PE-MPs.


Assuntos
Percas , Poluentes Químicos da Água , Animais , Água Doce , Microplásticos/toxicidade , Plásticos/metabolismo , Polietileno/metabolismo , Polietileno/toxicidade , Poluentes Químicos da Água/análise , Peixe-Zebra/metabolismo
7.
Aquat Toxicol ; 243: 106074, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35030472

RESUMO

In the last decades, cyanobacterial harmful algal blooms (CyanoHABs) pose an intensifying ecological threat. Microcystis aeruginosa is a common CyanoHAB species in freshwater ecosystems, with severe toxic effects in a wide range of organisms. In the present paper we examined whether transient and short (48 h) exposure of fish embryos to sublethal levels of M. aeruginosa crude extract (200 mg biomass dw L-1) affects swimming performance at later life stages (end of metamorphosis, ca 12 mm TL, 22,23 days post-fertilization). Pre-exposed metamorphosing larvae presented a significant decrease in swimming performance (9.7 ± 1.6 vs 11.4 ± 1.7 TL s-1 in the control group, p < 0.01), and a significant decrease in the ventricle length-to-depth ratio (1.23 ± 0.15 vs 1.42 ± 0.15 in control fish, p < 0.05). In addition, extract-exposed fish presented significantly elevated rates of vertebral abnormalities (82 ± 13% vs 7 ± 4% in the control group), mainly consisting of the presence of extra neural and haemal processes. No significant differences between groups were detected in survival and growth rates. Results are discussed in respect to the mechanisms that might mediate the detected cyanobacterial effects. This is the first evidence of a direct link between sublethal exposure to M. aeruginosa during the embryonic period and swimming performance at later life-stages. Decreased swimming performance, altered cardiac shape, and elevated vertebral abnormalities in response to early exposure to M. aeruginosa could have significant effects on fish populations in the wild.


Assuntos
Microcystis , Poluentes Químicos da Água , Animais , Ecossistema , Desenvolvimento Embrionário , Microcistinas , Natação , Poluentes Químicos da Água/toxicidade , Peixe-Zebra
8.
Toxics ; 9(11)2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34822680

RESUMO

Microplastics (MPs)' ingestion has been demonstrated in several aquatic organisms. This process may facilitate the hydrophobic waterborne pollutants or chemical additives transfer to biota. In the present study the suitability of a battery of biomarkers on oxidative stress, physiology, tissue function and metabolic profile was investigated for the early detection of adverse effects of 21-day exposure to polystyrene microplastics (PS-MPs, sized 5-12 µm) in the liver and gills of zebrafish Danio rerio and perch, Perca fluviatilis, both of which are freshwater fish species. An optical volume map representation of the zebrafish gill by Raman spectroscopy depicted 5 µm diameter PS-MP dispersed in the gill tissue. Concentrations of PS-MPs close to the EC50 of each fish affected fish physiology in all tissues studied. Increased levels of biomarkers of oxidative damage in exposed fish in relation to controls were observed, as well as activation of apoptosis and autophagy processes. Malondialdehyde (MDA), protein carbonyls and DNA damage responses differed with regard to the sensitivity of each tissue of each fish. In the toxicity cascade gills seemed to be more liable to respond to PS-MPs than liver for the majority of the parameters measured. DNA damage was the most susceptible biomarker exhibiting greater response in the liver of both species. The interaction between MPs and cellular components provoked metabolic alterations in the tissues studied, affecting mainly amino acids, nitrogen and energy metabolism. Toxicity was species and tissue specific, with specific biomarkers responding differently in gills and in liver. The fish species that seemed to be more susceptible to MPs at the conditions studied, was P. fluviatilis compared to D. rerio. The current findings add to a holistic approach for the identification of small sized PS-MPs' biological effects in fish, thus aiming to provide evidence regarding PS-MPs' environmental impact on wild fish populations and food safety and adequacy.

9.
J Hazard Mater ; 416: 125969, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492880

RESUMO

In the present study the effects of sublethal concentrations of polystyrene microplastics (PS-MPs) on zebrafish were evaluated at multiple levels, related to fish activity and oxidative stress, metabolic changes and contraction parameters in the heart tissue. Zebrafish were fed for 21 days food enriched with PS-MPs (particle sizes 3-12 µm) and a battery of stress indices like DNA damage, lipid peroxidation, autophagy, ubiquitin levels, caspases activation, metabolite adjustments, frequency and force of ventricular contraction were measured in fish heart, parallel to fish swimming velocity. In particular, exposure to PS-MPs caused significant decrease in heart function and swimming competence, while enhanced levels of oxidative stress indices and metabolic adjustments were observed in the heart of challenged species. Among stress indices, DNA damage was more vulnerable to the effect of PS-MPs. Our results provide evidence on the multiplicity of the PS-MPs effects on cellular function, physiology and metabolic pathways and heart rate of adult fish and subsequent effects on fish activity and fish fitness thus enlightening MPs characterization as a potent environmental pollutant.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Estresse Oxidativo , Plásticos , Poliestirenos/metabolismo , Poliestirenos/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/metabolismo
10.
Sci Rep ; 11(1): 16964, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34417489

RESUMO

The phenotype of juvenile fish is closely associated with the adult phenotype, thus consisting an important quality trait for reared fish stocks. In this study, we estimated the correlation between the juvenile and adult body-shape in Gilthead seabream, and examined the genetic basis of the ontogenetic trajectories. The body shape of 959 pit-tagged fish was periodically examined during the juvenile-to-adult period. Individual shape ontogenetic trajectories were studied in respect to the initial (juvenile) and final (adult) phenotypes, as well as to the rate that adult phenotype is attained (phenotypic integration rate). We found that the juvenile body-shape presented a rapid change up to 192.7 ± 1.9 mm standard length, followed by a phenotypically stable period (plateau). Depending on the shape component considered, body-shape correlations between juvenile and adult stages ranged from 0.22 to 0.76. Heritability estimates (h2) of the final phenotype ranged from 0.370 ± 0.077 to 0.511 ± 0.089, whereas h2 for the phenotypic integration rate was 0.173 ± 0.062. To our knowledge, this is the first study demonstrating that the variance of the ontogenetic trajectories has a substantial additive genetic component. Results are discussed in respect to their potential use in selective breeding programs of Gilthead seabream.


Assuntos
Variação Genética , Dourada/anatomia & histologia , Dourada/genética , Somatotipos/genética , Envelhecimento/genética , Animais , Genótipo , Padrões de Herança/genética , Fenótipo , Característica Quantitativa Herdável
11.
J Fish Dis ; 44(11): 1689-1696, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34275148

RESUMO

Targeting in zebrafish fast growth, high survival rates and improved reproductive performance has led over the last years in variable feeding regimes between different facilities. Despite its significance on fish function and welfare, normal skeletal development has rarely been evaluated in establishing the best feeding practices for zebrafish. The aim of this study was to establish a protocol for normal skeletal development, growth and survival of zebrafish larvae through live feed-to-microdiet transition at an appropriate rate. Four feeding regimes including feeding exclusively on Artemia nauplii (A) or dry microdiet (D), and feeding on both Artemia and microdiet at two different transition rates (slow (B) or fast (C)) were applied from 5 to 24 dpf (days post-fertilization). Results demonstrated a significant effect of feeding regimes on the incidence of skeletal abnormalities (gill cover, fins and vertebral column, p < .05) in zebrafish larvae. The A and B experimental groups presented the highest (88 ± 3 and 84 ± 17%, respectively), but the C and D the lowest (18 ± 14 and 11 ± 2%, respectively), rates of normal fish (fish without any abnormality). Similarly, growth rate was comparatively elevated in A and B groups. No significant differences were observed in fish survival between A, B and C groups. However, D group presented a significantly lower survival rate. To our knowledge, this is the first study to show that the live feed-to-microdiet transition rate influences larval growth, survival and abnormality rates in a non-homogenous pattern.


Assuntos
Desenvolvimento Ósseo , Dieta/veterinária , Peixe-Zebra/crescimento & desenvolvimento , Ração Animal , Animais , Artemia , Osso e Ossos/patologia , Larva/crescimento & desenvolvimento
12.
Sci Rep ; 11(1): 8787, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33888827

RESUMO

Temperatures experienced during early ontogeny significantly influence fish phenotypes, with clear consequences for the wild and reared stocks. We examined the effect of temperature (17, 20, or 23 °C) during the short embryonic and yolk-sac larval period, on the swimming performance and skeleton of metamorphosing Gilthead seabream larvae. In the following ontogenetic period, all fish were subjected to common temperature (20 °C). The critical swimming speed of metamorphosing larvae was significantly decreased from 9.7 ± 0.6 TL/s (total length per second) at 17 °C developmental temperature (DT) to 8.7 ± 0.6 and 8.8 ± 0.7 TL/s at 20 and 23 °C DT respectively (p < 0.05). Swimming performance was significantly correlated with fish body shape (p < 0.05). Compared with the rest groups, fish of 17 °C DT presented a slender body shape, longer caudal peduncle, terminal mouth and ventrally transposed pectoral fins. Moreover, DT significantly affected the relative depth of heart ventricle (VD/TL, p < 0.05), which was comparatively increased at 17 °C DT. Finally, the incidence of caudal-fin abnormalities significantly decreased (p < 0.05) with the increase of DT. To our knowledge, this is the first evidence for the significant effect of DT during the short embryonic and yolk-sac larval period on the swimming performance of the later stages.


Assuntos
Larva/fisiologia , Metamorfose Biológica , Dourada/fisiologia , Animais , Larva/crescimento & desenvolvimento , Dourada/crescimento & desenvolvimento , Esqueleto/crescimento & desenvolvimento , Esqueleto/fisiologia , Natação , Temperatura
14.
J Morphol ; 282(1): 80-87, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33617037

RESUMO

A new, three-dimensional geometric morphometric approach was assessed to study the effect of developmental temperature on fish heart shape utilizing geometric morphometrics of three-dimensional landmarks captured on digitally reconstructed zebrafish hearts. This study reports the first three-dimensional analysis of the fish heart and demonstrates significant shape modifications occurring after three developmental temperature treatments (TD = 24, 28 or 32°C) at two distinct developmental stages (juvenile and adult fish). Elevation of TD induced ventricle roundness in juveniles, males and females. Furthermore, significant differences that have not been described so far in heart morphometric indices (i.e., ventricle sphericity, bulbus arteriosus elongation and relative location, heart asymmetry) were identified. Sex proved to be a significant regulating factor of heart shape plasticity in response to TD. This methodology offers unique benefits by providing a more precise representation of heart shape changes in response to developmental temperature that are otherwise not discernable with the previously described two-dimensional methods. Our work provides the first evidence of three-dimensional shape alterations of the zebrafish heart adding to the emerging rationale of temperature-driven plastic responses of global warming and seasonal temperature disturbances in wild fish populations and in other ectothermic vertebrates as well (amphibians and reptiles).


Assuntos
Ventrículos do Coração/anatomia & histologia , Ventrículos do Coração/crescimento & desenvolvimento , Imageamento Tridimensional , Temperatura , Peixe-Zebra/anatomia & histologia , Peixe-Zebra/crescimento & desenvolvimento , Pontos de Referência Anatômicos , Animais , Feminino , Masculino
15.
J Fish Biol ; 98(4): 987-994, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31858594

RESUMO

The anabolic effect of exercise on muscles and bones is well documented. In teleost fish, exercise has been shown to accelerate skeletogenesis, to increase bone volume, and to change the shape of vertebral bodies. Still, increased swimming has also been reported to induce malformations of the teleost vertebral column, particularly lordosis. This study examines whether zebrafish (Danio rerio) develops lordosis as a result of continuous physical exercise. Zebrafish were subjected, for 1 week, to an increased swimming exercise of 5.0, 6.5 or 8.0 total body lengths (TL) per second. Control and exercise group zebrafish were examined for the presence of vertebral abnormalities, by in vivo examination, whole mount staining for bone and cartilage and histology and micro-computed tomography (CT) scanning. Exercise zebrafish developed a significantly higher rate of lordosis in the haemal part of the vertebral column. At the end of the experiment, the frequency of lordosis in the control groups was 0.5 ± 1.3% and that in the exercise groups was 7.5 ± 10.6%, 47.5 ± 10.6% and 92.5 ± 6.0% of 5.0, 6.5 and 8.0 TL∙s-1 , respectively. Histological analysis and CT scanning revealed abnormal vertebrae with dorsal folding of the vertebral body end plates. Possible mechanisms that trigger lordotic spine malformations are discussed. This is the first study to report a quick, reliable and welfare-compatible method of inducing skeletal abnormalities in a vertebrate model during the post-embryonic period.


Assuntos
Cartilagem/patologia , Lordose/patologia , Condicionamento Físico Animal/efeitos adversos , Coluna Vertebral/patologia , Natação , Peixe-Zebra/fisiologia , Animais , Lordose/diagnóstico por imagem , Microtomografia por Raio-X
16.
J Fish Biol ; 98(1): 277-286, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33030741

RESUMO

Otolith structure is a useful tool in discrimination among fish populations as it is a permanent record of the influence of endogenous and exogenous factors. In the present study we examined otolith morphology and fluctuating asymmetry (FA) for differences between wild-caught (by bottom trawl) and reared specimens of Gilthead seabream (Sparus aurata). Based on the frequency of regenerated scales (degree of scale regeneration, SRD) on each specimen, a threshold of 30% SRD was used to assign wild-caught fish individuals as wild (≤30% SRD, LR group) or as possible aquaculture escapees (>30% SRD, HR group). Based on the analysis of elliptic Fourier descriptors, significant differences were found in otolith shape between reared (Rr) and the wild-caught groups (LR, HR). Reared fish had otoliths with significantly larger perimeter (OP ) than wild-caught fish. Furthermore, FA was significantly higher in the Rr than the LR group for OP and all except one shape descriptors (harmonics 2-7). The HR group exhibited intermediate levels of FA between the low and high FA levels observed in the LR and Rr groups. Results are discussed in terms of the value of combining otolith and scale morphology for the identification of escapees in wild Gilthead seabream stocks.


Assuntos
Aquicultura , Membrana dos Otólitos/anatomia & histologia , Dourada/anatomia & histologia , Animais , Especificidade da Espécie
18.
Environ Int ; 138: 105611, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32126387

RESUMO

Titanium dioxide nanoparticles (TiO2-NPs) are among the most popular manufactured and widely used nanoparticles. They are released into the environment, affecting terrestrial and aquatic ecosystems, with unexpected consequences to organisms and human health. The present study investigates the mediated toxicity imposed to the freshwater fish species, zebrafish (Danio rerio) and the prussian carp (Carassius gibelio), and to the terrestrial land snail Cornu aspersum, after their exposure to sublethal concentrations of TiO2-NPs. Oxidative, proteolytic, genotoxic and apoptotic parameters in fish liver and gills, as well as on snail hemocytes were studied and the swimming performance was estimated in order to (a) estimate and suggest the most susceptible animal, and (b) propose a common battery of biomarkers as the most suitable indicator for biomonitoring studies against TiO2-NPs. Our in vivo experiments demonstrated that NPs induced detrimental effects on animal physiology and swimming behavior, while no general pattern was observed in species and tissues responsiveness. Generally, TiO2-NPs seemed to activate a group of molecules that are common for aquatic as well as terrestrial animals, implying the existence of a conserved mechanism. It seems that after exposure to TiO2-NPs, a common mechanism is activated that involves the stimulation of immune system with the production of ROS, damage of lysosomal membrane, protein carbonylation, lipid peroxidation, DNA damage, following proteolysis by ubiquitin and finally apoptosis. Thus, the simultaneous use of the latter biomarkers could be suggested as a reliable multi parameter approach for biomonitoring of aquatic and terrestrial ecosystems against TiO2-NPs.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Animais , Ecossistema , Humanos , Nanopartículas Metálicas/toxicidade , Modelos Animais , Nanopartículas/toxicidade , Estresse Oxidativo , Titânio/toxicidade
19.
J Hazard Mater ; 383: 121204, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31541956

RESUMO

Among pollutants, nanoparticles (NPs) consist a potential environmental hazard, as they could possibly harm the aquatic and terrestrial ecosystems while having unpredictable repercussions on human health. Since monitoring the impact of NPs on aquatic and terrestrial life is challenging, due to the differential sensitivities of organisms to a given nanomaterial, the present study examines magnetite nanoparticles' mediated toxicity in different animal models, representing distinctive environments (terrestrial and aquatic). Oxidative, proteolytic and genotoxic effects were evaluated on the hemocytes of the snail Cornu aspersum; in addition to those, apoptotic effects were measured in gills and liver of the zebrafish Danio rerio, and the prussian carp Carassius gibelio. All biochemical parameters studied increased significantly in animals after 8 days exposure to NPs. Inter-species and inter-tissues differences in responses were evident. Our results suggest a common toxicity response mechanism functioning in the tissues of the three animals studied that is triggered by magnetite NPs. The simultaneous use of these parameters could be established after further investigation as a reliable multi-parameter approach for biomonitoring of terrestrial and aquatic ecosystems against magnetite nanoparticles. Additionally, the results of our study could contribute to the design of studies for the production and rational utilization of nanoparticles.


Assuntos
Cyprinidae , Nanopartículas de Magnetita , Nanopartículas Metálicas , Nanopartículas , Poluentes Químicos da Água , Animais , Ecossistema , Nanopartículas de Magnetita/toxicidade , Modelos Animais , Nanopartículas/toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra
20.
Sci Rep ; 9(1): 9832, 2019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-31285491

RESUMO

Haemal lordosis is a frequent abnormality of the vertebral column. It has been recorded to develop in different finfish species, during the hatchery rearing phase. Under certain conditions, this abnormality reaches a high prevalence and severity degree, with significant effects on the external morphology of the fish. We show that haemal lordosis recovers during the on-growing of Gilthead seabream in sea cages. At the end of the hatchery phase, 1700 seabream juveniles were tagged electronically and examined for the presence of haemal lordosis. Subsequently, their morphology was examined periodically up to the end of the on-growing period. We found that the prevalence of fish with a lordotic external morphology decreased during the studied period by approximately 50%. Interestingly, 27% of the recovered fish presented a completely normal vertebral column. Geometric morphometric analysis showed no significant differences in the body shape between the fish with a recovered normal phenotype and the fish that were normal since the beginning of the on-growing period. Our results provide the first evidence for the recovery of lordosis during the growth of fish. A mechanism with multiple levels of remodeling of abnormal bones is suggested.


Assuntos
Doenças dos Peixes/epidemiologia , Lordose/veterinária , Dourada/crescimento & desenvolvimento , Animais , Doenças dos Peixes/diagnóstico , Doenças dos Peixes/patologia , Lordose/epidemiologia , Lordose/patologia , Vigilância da População , Prevalência , Dourada/anormalidades , Coluna Vertebral/anormalidades , Coluna Vertebral/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...