Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 530(7589): 228-232, 2016 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-26840485

RESUMO

The Ebola virus disease epidemic in West Africa is the largest on record, responsible for over 28,599 cases and more than 11,299 deaths. Genome sequencing in viral outbreaks is desirable to characterize the infectious agent and determine its evolutionary rate. Genome sequencing also allows the identification of signatures of host adaptation, identification and monitoring of diagnostic targets, and characterization of responses to vaccines and treatments. The Ebola virus (EBOV) genome substitution rate in the Makona strain has been estimated at between 0.87 × 10(-3) and 1.42 × 10(-3) mutations per site per year. This is equivalent to 16-27 mutations in each genome, meaning that sequences diverge rapidly enough to identify distinct sub-lineages during a prolonged epidemic. Genome sequencing provides a high-resolution view of pathogen evolution and is increasingly sought after for outbreak surveillance. Sequence data may be used to guide control measures, but only if the results are generated quickly enough to inform interventions. Genomic surveillance during the epidemic has been sporadic owing to a lack of local sequencing capacity coupled with practical difficulties transporting samples to remote sequencing facilities. To address this problem, here we devise a genomic surveillance system that utilizes a novel nanopore DNA sequencing instrument. In April 2015 this system was transported in standard airline luggage to Guinea and used for real-time genomic surveillance of the ongoing epidemic. We present sequence data and analysis of 142 EBOV samples collected during the period March to October 2015. We were able to generate results less than 24 h after receiving an Ebola-positive sample, with the sequencing process taking as little as 15-60 min. We show that real-time genomic surveillance is possible in resource-limited settings and can be established rapidly to monitor outbreaks.


Assuntos
Ebolavirus/genética , Monitoramento Epidemiológico , Genoma Viral/genética , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/virologia , Análise de Sequência de DNA/instrumentação , Análise de Sequência de DNA/métodos , Aeronaves , Surtos de Doenças/estatística & dados numéricos , Ebolavirus/classificação , Ebolavirus/patogenicidade , Guiné/epidemiologia , Humanos , Mutagênese/genética , Taxa de Mutação , Fatores de Tempo
2.
Nature ; 524(7563): 97-101, 2015 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-26083749

RESUMO

West Africa is currently witnessing the most extensive Ebola virus (EBOV) outbreak so far recorded. Until now, there have been 27,013 reported cases and 11,134 deaths. The origin of the virus is thought to have been a zoonotic transmission from a bat to a two-year-old boy in December 2013 (ref. 2). From this index case the virus was spread by human-to-human contact throughout Guinea, Sierra Leone and Liberia. However, the origin of the particular virus in each country and time of transmission is not known and currently relies on epidemiological analysis, which may be unreliable owing to the difficulties of obtaining patient information. Here we trace the genetic evolution of EBOV in the current outbreak that has resulted in multiple lineages. Deep sequencing of 179 patient samples processed by the European Mobile Laboratory, the first diagnostics unit to be deployed to the epicentre of the outbreak in Guinea, reveals an epidemiological and evolutionary history of the epidemic from March 2014 to January 2015. Analysis of EBOV genome evolution has also benefited from a similar sequencing effort of patient samples from Sierra Leone. Our results confirm that the EBOV from Guinea moved into Sierra Leone, most likely in April or early May. The viruses of the Guinea/Sierra Leone lineage mixed around June/July 2014. Viral sequences covering August, September and October 2014 indicate that this lineage evolved independently within Guinea. These data can be used in conjunction with epidemiological information to test retrospectively the effectiveness of control measures, and provides an unprecedented window into the evolution of an ongoing viral haemorrhagic fever outbreak.


Assuntos
Surtos de Doenças/estatística & dados numéricos , Ebolavirus/genética , Evolução Molecular , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/virologia , Filogenia , Análise Espaço-Temporal , Substituição de Aminoácidos/genética , Ebolavirus/isolamento & purificação , Feminino , Guiné/epidemiologia , Doença pelo Vírus Ebola/transmissão , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Libéria/epidemiologia , Masculino , Mali/epidemiologia , Dados de Sequência Molecular , Serra Leoa/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...