Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Ocul Immunol Inflamm ; 26(8): 1228-1236, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28914568

RESUMO

PURPOSE: We investigated the effect of exogenously administered human embryonic stem cell-derived mesenchymal stromal cells (hESC-MSCs) in experimental autoimmune uveitis (EAU) in B10.RIII mice, a murine model of severe uveitis. METHODS: B10.RIII mice were immunized with an uveitogenic peptide, and intraperitoneal injections of 5 million hESC-MSCs per animal were given on the same day. Behavioral light sensitivity assays, histological evaluation, cytokine production, and regulatory T cells were analyzed at the peak of the disease. RESULTS: Histological and behavioral evidence demonstrated that early systemic treatment with hESC-MSCs decreases the development of severe EAU in B10.RIII mice. hESC-MSCs suppress Th17 and upregulate Th1 and Th2 responses as well as IL-2 and GM-CSF in splenocytes from hESC-MSC-treated mice. CONCLUSIONS: MSCs that originate from hESC decrease the development of severe EAU in B10.RIII mice, likely through systemic immune modulation. Further investigation is needed to determine any potential effect on active EAU.


Assuntos
Doenças Autoimunes/prevenção & controle , Células-Tronco Embrionárias Humanas/citologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/fisiologia , Células Estromais/fisiologia , Uveíte/prevenção & controle , Animais , Doenças Autoimunes/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Humanos , Camundongos , Células Th1/imunologia , Células Th17/imunologia , Células Th2/imunologia , Uveíte/imunologia
3.
Sci Rep ; 5: 17685, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26628350

RESUMO

Adult tissue-derived mesenchymal stromal cells (MSCs) are showing promise in clinical trials for systemic lupus erythematosus (SLE). However, the inability to manufacture large quantities of functional cells from a single donor as well as donor-dependent variability in quality limits their clinical utility. Human embryonic stem cell (hESC)-derived MSCs are an alternative to adult MSCs that can circumvent issues regarding scalability and consistent quality due to their derivation from a renewable starting material. Here, we show that hESC-MSCs prevent the progression of fatal lupus nephritis (LN) in NZB/W F1 (BWF1) mice. Treatment led to statistically significant reductions in proteinuria and serum creatinine and preserved renal architecture. Specifically, hESC-MSC treatment prevented disease-associated interstitial inflammation, protein cast deposition, and infiltration of CD3(+) lymphocytes in the kidneys. This therapy also led to significant reductions in serum levels of tumor necrosis factor alpha (TNFα) and interleukin 6 (IL-6), two inflammatory cytokines associated with SLE. Mechanistically, in vitro data support these findings, as co-culture of hESC-MSCs with lipopolysaccharide (LPS)-stimulated BWF1 lymphocytes decreased lymphocyte secretion of TNFα and IL-6, and enhanced the percentage of putative regulatory T cells. This study represents an important step in the development of a commercially scalable and efficacious cell therapy for SLE/LN.


Assuntos
Células-Tronco Embrionárias Humanas/metabolismo , Rim , Nefrite Lúpica , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Adultas/metabolismo , Animais , Modelos Animais de Doenças , Xenoenxertos , Humanos , Rim/metabolismo , Rim/patologia , Rim/fisiopatologia , Nefrite Lúpica/metabolismo , Nefrite Lúpica/patologia , Nefrite Lúpica/fisiopatologia , Nefrite Lúpica/terapia , Camundongos
4.
Stem Cells Transl Med ; 4(6): 685-94, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25848121

RESUMO

UNLABELLED: Evidence suggests that transplanted mesenchymal stem cells (MSCs) can aid recovery of damaged myocardium caused by myocardial infarction. One possible mechanism for MSC-mediated recovery is reprogramming after cell fusion between transplanted MSCs and recipient cardiac cells. We used a Cre/LoxP-based luciferase reporter system coupled to biophotonic imaging to detect fusion of transplanted human pluripotent stem cell-derived MSCs to cells of organs of living mice. Human MSCs, with transient expression of a viral fusogen, were delivered to the murine heart via a collagen patch. At 2 days and 1 week later, living mice were probed for bioluminescence indicative of cell fusion. Cell fusion was detected at the site of delivery (heart) and in distal tissues (i.e., stomach, small intestine, liver). Fusion was confirmed at the cellular scale via fluorescence in situ hybridization for human-specific and mouse-specific centromeres. Human cells in organs distal to the heart were typically located near the vasculature, suggesting MSCs and perhaps MSC fusion products have the ability to migrate via the circulatory system to distal organs and engraft with local cells. The present study reveals previously unknown migratory patterns of delivered human MSCs and associated fusion products in the healthy murine heart. The study also sets the stage for follow-on studies to determine the functional effects of cell fusion in a model of myocardial damage or disease. SIGNIFICANCE: Mesenchymal stem cells (MSCs) are transplanted to the heart, cartilage, and other tissues to recover lost function or at least limit overactive immune responses. Analysis of tissues after MSC transplantation shows evidence of fusion between MSCs and the cells of the recipient. To date, the biologic implications of cell fusion remain unclear. A newly developed in vivo tracking system was used to identify MSC fusion products in living mice. The migratory patterns of fusion products were determined both in the target organ (i.e., the heart) and in distal organs. This study shows, for the first time, evidence of fusion products at sites distal from the target organ and data to suggest that migration occurs via the vasculature. These results will inform and improve future, MSC-based therapeutics.


Assuntos
Movimento Celular , Rastreamento de Células , Coração , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Células-Tronco Pluripotentes , Animais , Fusão Celular , Xenoenxertos , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Especificidade de Órgãos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/transplante
5.
Stem Cell Reports ; 3(1): 115-30, 2014 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-25068126

RESUMO

Current therapies for multiple sclerosis (MS) are largely palliative, not curative. Mesenchymal stem cells (MSCs) harbor regenerative and immunosuppressive functions, indicating a potential therapy for MS, yet the variability and low potency of MSCs from adult sources hinder their therapeutic potential. MSCs derived from human embryonic stem cells (hES-MSCs) may be better suited for clinical treatment of MS because of their unlimited and stable supply. Here, we show that hES-MSCs significantly reduce clinical symptoms and prevent neuronal demyelination in a mouse experimental autoimmune encephalitis (EAE) model of MS, and that the EAE disease-modifying effect of hES-MSCs is significantly greater than that of human bone-marrow-derived MSCs (BM-MSCs). Our evidence also suggests that increased IL-6 expression by BM-MSCs contributes to the reduced anti-EAE therapeutic activity of these cells. A distinct ability to extravasate and migrate into inflamed CNS tissues may also be associated with the robust therapeutic effects of hES-MSCs on EAE.


Assuntos
Células da Medula Óssea/citologia , Células-Tronco Embrionárias/citologia , Encefalomielite Autoimune Experimental/terapia , Células-Tronco Mesenquimais/citologia , Esclerose Múltipla/patologia , Esclerose Múltipla/terapia , Animais , Sistema Nervoso Central/patologia , Modelos Animais de Doenças , Humanos , Transplante de Células-Tronco Mesenquimais , Camundongos
6.
Cardiovasc Eng Technol ; 5(1): 119-131, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24683428

RESUMO

PURPOSE: Demonstrate a novel manufacturing method to generate extracellular matrix scaffolds from cardiac fibroblasts (CF-ECM) as a therapeutic mesenchymal stem cell-transfer device. MATERIALS AND METHODS: Rat CF were cultured at high-density (~1.6×105/cm2) for 10-14 days. Cell sheets were removed from the culture dish by incubation with EDTA and decellularized with water and peracetic acid. CF-ECM was characterized by mass spectrometry, immunofluorescence and scanning electron microscopy. CF-ECM seeded with human embryonic stem cell derived mesenchymal stromal cells (hEMSCs) were transferred into a mouse myocardial infarction model. 48 hours later, mouse hearts were excised and examined for CF-ECM scaffold retention and cell transfer. RESULTS: CF-ECM scaffolds are composed of fibronectin (82%), collagens type I (13%), type III (3.4%), type V (0.2%), type II (0.1%) elastin (1.3%) and 18 non-structural bioactive molecules. Scaffolds remained intact on the mouse heart for 48 hours without the use of sutures or glue. Identified hEMSCs were distributed from the epicardium to the endocardium. CONCLUSIONS: High density cardiac fibroblast culture can be used to generate CF-ECM scaffolds. CF-ECM scaffolds seeded with hEMSCs can be maintained on the heart without suture or glue. hEMSC are successfully delivered throughout the myocardium.

7.
Stem Cells Dev ; 23(14): 1611-24, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24650034

RESUMO

Mesenchymal stem cells (MSCs) are being tested in a wide range of human diseases; however, loss of potency and inconsistent quality severely limit their use. To overcome these issues, we have utilized a developmental precursor called the hemangioblast as an intermediate cell type in the derivation of a highly potent and replenishable population of MSCs from human embryonic stem cells (hESCs). This method circumvents the need for labor-intensive hand-picking, scraping, and sorting that other hESC-MSC derivation methods require. Moreover, unlike previous reports on hESC-MSCs, we have systematically evaluated their immunomodulatory properties and in vivo potency. As expected, they dynamically secrete a range of bioactive factors, display enzymatic activity, and suppress T-cell proliferation that is induced by either allogeneic cells or mitogenic stimuli. However, they also display unique immunophenotypic properties, as well as a smaller size and >30,000-fold proliferative capacity than bone marrow-derived MSCs. In addition, this is the first report which demonstrates that hESC-MSCs can inhibit CD83 up-regulation and IL-12p70 secretion from dendritic cells and enhance regulatory T-cell populations induced by interleukin 2 (IL-2). This is also the first report which shows that hESC-MSCs have therapeutic efficacy in two different autoimmune disorder models, including a marked increase in survival of lupus-prone mice and a reduction of symptoms in an autoimmune model of uveitis. Our data suggest that this novel and therapeutically active population of MSCs could overcome many of the obstacles that plague the use of MSCs in regenerative medicine and serve as a scalable alternative to current MSC sources.


Assuntos
Diferenciação Celular/genética , Imunomodulação , Células-Tronco Mesenquimais/citologia , Células-Tronco Pluripotentes/citologia , Animais , Diferenciação Celular/imunologia , Linhagem da Célula , Proliferação de Células/genética , Células Dendríticas/citologia , Células Dendríticas/imunologia , Humanos , Ativação Linfocitária/imunologia , Células-Tronco Mesenquimais/imunologia , Camundongos , Células-Tronco Pluripotentes/imunologia , Linfócitos T Reguladores/imunologia
8.
Stem Cells Int ; 2012: 414038, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22701126

RESUMO

Mesenchymal stem cells (MSCs) spontaneously fuse with somatic cells in vivo, albeit rarely, and the fusion products are capable of tissue-specific function (mature trait) or proliferation (immature trait), depending on the microenvironment. That stem cells can be programmed, or somatic cells reprogrammed, in this fashion suggests that stem cell fusion holds promise as a therapeutic approach for the repair of damaged tissues, especially tissues not readily capable of functional regeneration, such as the myocardium. In an attempt to increase the frequency of stem cell fusion and, in so doing, increase the potential for cardiac tissue repair, we expressed the fusogen of the vesicular stomatitis virus (VSV-G) in human MSCs. We found VSV-G expressing MSCs (vMSCs) fused with cardiomyocytes (CMs) and these fusion products adopted a CM-like phenotype and morphology in vitro. In vivo, vMSCs delivered to damaged mouse myocardium via a collagen patch were able to home to the myocardium and fuse to cells within the infarct and peri-infarct region of the myocardium. This study provides a basis for the investigation of the biological impact of fusion of stem cells with CMs in vivo and illustrates how viral fusion proteins might better enable such studies.

9.
J Vis Exp ; (59): e3581, 2012 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-22230968

RESUMO

The ability of two or more cells of the same type to fuse has been utilized in metazoans throughout evolution to form many complex organs, including skeletal muscle, bone and placenta. Contemporary studies demonstrate fusion of cells of the same type confers enhanced function. For example, when the trophoblast cells of the placenta fuse to form the syncytiotrophoblast, the syncytiotrophoblast is better able to transport nutrients and hormones across the maternal-fetal barrier than unfused trophoblasts(1-4). More recent studies demonstrate fusion of cells of different types can direct cell fate. The "reversion" or modification of cell fate by fusion was once thought to be limited to cell culture systems. But the advent of stem cell transplantation led to the discovery by us and others that stem cells can fuse with somatic cells in vivo and that fusion facilitates stem cell differentiation(5-7). Thus, cell fusion is a regulated process capable of promoting cell survival and differentiation and thus could be of central importance for development, repair of tissues and even the pathogenesis of disease. Limiting the study of cell fusion, is lack of appropriate technology to 1) accurately identify fusion products and to 2) track fusion products over time. Here we present a novel approach to address both limitations via induction of bioluminescence upon fusion (Figure 1); bioluminescence can be detected with high sensitivity in vivo(8-15). We utilize a construct encoding the firefly luciferase (Photinus pyralis) gene placed adjacent to a stop codon flanked by LoxP sequences. When cells expressing this gene fuse with cells expressing the Cre recombinase protein, the LoxP sites are cleaved and the stop signal is excised allowing transcription of luciferase. Because the signal is inducible, the incidence of false-positive signals is very low. Unlike existing methods which utilize the Cre/LoxP system(16, 17), we have incorporated a "living" detection signal and thereby afford for the first time the opportunity to track the kinetics of cell fusion in vivo. To demonstrate the approach, mice ubiquitously expressing Cre recombinase served as recipients of stem cells transfected with a construct to express luciferase downstream of a floxed stop codon. Stem cells were transplanted via intramyocardial injection and after transplantation intravital image analysis was conducted to track the presence of fusion products in the heart and surrounding tissues over time. This approach could be adapted to analyze cell fusion in any tissue type at any stage of development, disease or adult tissue repair.


Assuntos
Fusão Celular/métodos , Integrases/genética , Recombinação Genética , Animais , Integrases/biossíntese , Luciferases de Vaga-Lume/genética , Medições Luminescentes/métodos , Células-Tronco Mesenquimais/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Transfecção/métodos
10.
Cell Tissue Res ; 347(3): 689-99, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22277991

RESUMO

Non-viral transfection is a promising technique that could be used to increase the therapeutic potential of stem cells. The purpose of this study was to explore practical culture parameters of relevance in potential human mesenchymal stem cell (hMSC) clinical and tissue engineering applications, including type of polycationic transfection reagent, N/P ratio and dose of polycation/pDNA polyplexes, cell passage number, cell density and cell proliferation. The non-viral transfection efficiency was significantly influenced by N/P ratio, polyplex dose, cell density and cell passage number. hMSC culture conditions that inhibited cell division also decreased transfection efficiency, suggesting that strategies to promote hMSC proliferation may be useful to enhance transfection efficiency in future tissue engineering studies. Non-viral transfection treatments influenced hMSC phenotype, including the expression level of the hMSC marker CD105 and the ability of hMSCs to differentiate down the osteogenic and adipogenic lineages. The parameters found here to promote hMSC transfection efficiency, minimize toxicity and influence hMSC phenotype may be instructive in future non-viral transfection studies and tissue engineering applications.


Assuntos
Meios de Cultura/farmacologia , Células-Tronco Mesenquimais/citologia , Engenharia Tecidual/métodos , Transfecção/métodos , Animais , Antígenos CD/metabolismo , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , DNA/metabolismo , Endoglina , Células Endoteliais da Veia Umbilical Humana , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Células NIH 3T3 , Plasmídeos/metabolismo , Polietilenoimina/química , Receptores de Superfície Celular/metabolismo , Vírus/efeitos dos fármacos , Vírus/metabolismo
11.
Regen Med ; 6(5): 569-82, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21916593

RESUMO

AIMS: Stem cell transplantation holds promise as a therapeutic approach for the repair of damaged myocardial tissue. One challenge of this approach is efficient delivery and long-term retention of the stem cells. Although several synthetic and natural biomaterials have been developed for this purpose, the ideal formulation has yet to be identified. MATERIALS & METHODS: Here we investigate the utility of a nondenatured, noncrosslinked, commercially available natural biomaterial (TissueMend(®) [TEI Biosciences, Boston, MA, USA]) for delivery of human mesenchymal stem cells (MSCs) to the murine heart. RESULTS: We found that MSCs attached, proliferated and migrated within and out of the TissueMend matrix in vitro. Human MSCs delivered to damaged murine myocardium via the matrix (2.3 × 10(4) ± 0.8 × 10(4) CD73(+) cells/matrix) were maintained in vivo for 3 weeks and underwent at least three population doublings during that period (21.9 × 10(4) ± 14.4 × 10(4) CD73(+) cells/matrix). In addition, collagen within the TissueMend matrix could be remodeled by MSCs in vivo, resulting in a significant decrease in the coefficient of alignment of fibers (0.12 ± 0.12) compared with the matrix alone (0.28 ± 0.07), and the MSCs were capable of migrating out of the matrix and into the host tissue. CONCLUSION: Thus, TissueMend matrix offers a commercially available, biocompatible and malleable vehicle for the delivery and retention of stem cells to the heart.


Assuntos
Materiais Biocompatíveis/uso terapêutico , Coração/fisiologia , Transplante de Células-Tronco Mesenquimais/métodos , Miocárdio/citologia , Animais , Materiais Biocompatíveis/química , Adesão Celular , Movimento Celular , Proliferação de Células , Colágeno/metabolismo , Humanos , Camundongos , Infarto do Miocárdio/terapia , Regeneração
12.
Integr Biol (Camb) ; 3(8): 832-42, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21720642

RESUMO

The influence of specific serum-borne biomolecules (e.g. heparin) on growth factor-dependent cell behavior is often difficult to elucidate in traditional cell culture due to the random, non-specific nature of biomolecule adsorption from serum. We hypothesized that chemically well-defined cell culture substrates could be used to study the influence of sequestered heparin on human mesenchymal stem cell (hMSC) behavior. Specifically, we used bio-inert self-assembled monolayers (SAMs) chemically modified with a bioinspired heparin-binding peptide (termed "HEPpep") and an integrin-binding peptide (RGDSP) as stem cell culture substrates. Our results demonstrate that purified heparin binds to HEPpep SAMs in a dose-dependent manner, and serum-borne heparin binds specifically and in a dose-dependent manner to HEPpep SAMs. These heparin-sequestering SAMs enhance hMSC proliferation by amplifying endogenous fibroblast growth factor (FGF) signaling, and enhance hMSC osteogenic differentiation by amplifying endogenous bone morphogenetic protein (BMP) signaling. The effects of heparin-sequestering are similar to the effects of supraphysiologic concentrations of recombinant FGF-2. hMSC phenotype is maintained over multiple population doublings on heparin-sequestering substrates in growth medium, while hMSC osteogenic differentiation is enhanced in a bone morphogenetic protein-dependent manner on the same substrates during culture in osteogenic induction medium. Together, these observations demonstrate that the influence of the substrate on stem cell phenotype is sensitive to the culture medium formulation. Our results also demonstrate that enhanced hMSC proliferation can be spatially localized by patterning the location of HEPpep on the substrate. Importantly, the use of chemically well-defined SAMs in this study eliminated the confounding factor of random, non-specific biomolecule adsorption, and identified serum-borne heparin as a key mediator of hMSC response to endogenous growth factors.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Células-Tronco Mesenquimais/citologia , Adsorção , Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular , Proliferação de Células , Meios de Cultura/metabolismo , Fator 2 de Crescimento de Fibroblastos/química , Heparina/química , Humanos , Osteogênese , Fenótipo , Ligação Proteica , Proteínas Recombinantes/química , Transdução de Sinais , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...