Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 628(8006): 154-161, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38480892

RESUMO

Several genetic risk factors for Alzheimer's disease implicate genes involved in lipid metabolism and many of these lipid genes are highly expressed in glial cells1. However, the relationship between lipid metabolism in glia and Alzheimer's disease pathology remains poorly understood. Through single-nucleus RNA sequencing of brain tissue in Alzheimer's disease, we have identified a microglial state defined by the expression of the lipid droplet-associated enzyme ACSL1 with ACSL1-positive microglia being most abundant in patients with Alzheimer's disease having the APOE4/4 genotype. In human induced pluripotent stem cell-derived microglia, fibrillar Aß induces ACSL1 expression, triglyceride synthesis and lipid droplet accumulation in an APOE-dependent manner. Additionally, conditioned media from lipid droplet-containing microglia lead to Tau phosphorylation and neurotoxicity in an APOE-dependent manner. Our findings suggest a link between genetic risk factors for Alzheimer's disease with microglial lipid droplet accumulation and neurotoxic microglia-derived factors, potentially providing therapeutic strategies for Alzheimer's disease.


Assuntos
Doença de Alzheimer , Apolipoproteína E4 , Gotículas Lipídicas , Microglia , Animais , Feminino , Humanos , Masculino , Camundongos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/patologia , Microglia/citologia , Microglia/metabolismo , Microglia/patologia , Triglicerídeos , Proteínas tau , Meios de Cultivo Condicionados , Fosforilação , Predisposição Genética para Doença
2.
Nat Neurosci ; 26(12): 2104-2121, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37957317

RESUMO

Apolipoprotein E4 (APOE4) is the strongest genetic risk factor for late-onset Alzheimer's disease (LOAD), leading to earlier age of clinical onset and exacerbating pathologies. There is a critical need to identify protective targets. Recently, a rare APOE variant, APOE3-R136S (Christchurch), was found to protect against early-onset AD in a PSEN1-E280A carrier. In this study, we sought to determine if the R136S mutation also protects against APOE4-driven effects in LOAD. We generated tauopathy mouse and human iPSC-derived neuron models carrying human APOE4 with the homozygous or heterozygous R136S mutation. We found that the homozygous R136S mutation rescued APOE4-driven Tau pathology, neurodegeneration and neuroinflammation. The heterozygous R136S mutation partially protected against APOE4-driven neurodegeneration and neuroinflammation but not Tau pathology. Single-nucleus RNA sequencing revealed that the APOE4-R136S mutation increased disease-protective and diminished disease-associated cell populations in a gene dose-dependent manner. Thus, the APOE-R136S mutation protects against APOE4-driven AD pathologies, providing a target for therapeutic development against AD.


Assuntos
Doença de Alzheimer , Tauopatias , Animais , Humanos , Camundongos , Doença de Alzheimer/genética , Apolipoproteína E3/genética , Apolipoproteína E4/genética , Mutação/genética , Doenças Neuroinflamatórias , Tauopatias/genética
3.
bioRxiv ; 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38014339

RESUMO

Despite strong evidence supporting the involvement of both apolipoprotein E4 (APOE4) and microglia in Alzheimer's Disease (AD) pathogenesis, the effects of microglia on neuronal APOE4-driven AD pathogenesis remain elusive. Here, we examined such effects utilizing microglial depletion in a chimeric model with human neurons in mouse hippocampus. Specifically, we transplanted homozygous APOE4, isogenic APOE3, and APOE-knockout (APOE-KO) induced pluripotent stem cell (iPSC)-derived human neurons into the hippocampus of human APOE3 or APOE4 knock-in mice, and depleted microglia in half the chimeric mice. We found that both neuronal APOE and microglial presence were important for the formation of Aß and tau pathologies in an APOE isoform-dependent manner (APOE4 > APOE3). Single-cell RNA-sequencing analysis identified two pro-inflammatory microglial subtypes with high MHC-II gene expression that are enriched in chimeric mice with human APOE4 neuron transplants. These findings highlight the concerted roles of neuronal APOE, especially APOE4, and microglia in AD pathogenesis.

4.
Cell Rep ; 42(10): 113252, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37863057

RESUMO

Apolipoprotein E4 (APOE4) is an important driver of Tau pathology, gliosis, and degeneration in Alzheimer's disease (AD). Still, the mechanisms underlying these APOE4-driven pathological effects remain elusive. Here, we report in a tauopathy mouse model that APOE4 promoted the nucleocytoplasmic translocation and release of high-mobility group box 1 (HMGB1) from hippocampal neurons, which correlated with the severity of hippocampal microgliosis and degeneration. Injection of HMGB1 into the hippocampus of young APOE4-tauopathy mice induced considerable and persistent gliosis. Selective removal of neuronal APOE4 reduced HMGB1 translocation and release. Treatment of APOE4-tauopathy mice with HMGB1 inhibitors effectively blocked the intraneuronal translocation and release of HMGB1 and ameliorated the development of APOE4-driven gliosis, Tau pathology, neurodegeneration, and myelin deficits. Single-nucleus RNA sequencing revealed that treatment with HMGB1 inhibitors diminished disease-associated and enriched disease-protective subpopulations of neurons, microglia, and astrocytes in APOE4-tauopathy mice. Thus, HMGB1 inhibitors represent a promising approach for treating APOE4-related AD.


Assuntos
Doença de Alzheimer , Proteína HMGB1 , Tauopatias , Animais , Camundongos , Doença de Alzheimer/patologia , Apolipoproteína E4/genética , Gliose , Camundongos Transgênicos , Tauopatias/tratamento farmacológico
5.
bioRxiv ; 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37693533

RESUMO

The impact of apolipoprotein E4 (apoE4), the strongest genetic risk factor for Alzheimer's disease (AD), on neuronal function remains unclear. We investigated this by examining excitatory neurons in the hippocampus of young and aged human apoE4 knock-in (apoE4-KI) and apoE3-KI mice using electrophysiology and single-nucleus RNA-sequencing (snRNA-seq). In young apoE4-KI mice, we identified region-specific subpopulations of excitatory neurons with hyperexcitability underlain by reduced cell size, which were eliminated by selective removal of neuronal apoE4. Aged apoE4-KI mice showed an increased fraction of hyperexcitable granule cells, a pronounced inhibitory deficit, and E/I imbalance in the dentate gyrus, contributing to network dysfunction. snRNA-seq analysis revealed neuron type-specific and age-dependent transcriptomic changes, identifying Nell2 overexpression in apoE4-KI mice. Reducing Nell2 expression in specific neuronal types of apoE4-KI mice with CRISPRi rescued their morphological and excitability phenotypes, supporting Nell2 overexpression as a cause for apoE4-induced neuronal dysfunction. Our findings highlight the early transcriptomic and morpho-electric alterations behind the apoE4-induced neuronal dysfunction in AD. HIGHLIGHTS: ApoE4 causes hyperexcitability of select hippocampal neurons in young apoE4 mice.ApoE4 causes dentate hyperexcitability and inhibitory deficit in aged apoE4 mice.snRNA-seq reveals apoE genotype-, cell type-, and age-dependent transcriptomic changes.Nell2 overexpression identified as a cause of apoE4-induced neuronal hyperexcitability.

6.
bioRxiv ; 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37546938

RESUMO

Several genetic risk factors for Alzheimer's Disease (AD) implicate genes involved in lipid metabolism and many of these lipid genes are highly expressed in glial cells. However, the relationship between lipid metabolism in glia and AD pathology remains poorly understood. Through single-nucleus RNA-sequencing of AD brain tissue, we have identified a microglial state defined by the expression of the lipid droplet (LD) associated enzyme ACSL1 with ACSL1-positive microglia most abundant in AD patients with the APOE4/4 genotype. In human iPSC-derived microglia (iMG) fibrillar Aß (fAß) induces ACSL1 expression, triglyceride synthesis, and LD accumulation in an APOE-dependent manner. Additionally, conditioned media from LD-containing microglia leads to Tau phosphorylation and neurotoxicity in an APOE-dependent manner. Our findings suggest a link between genetic risk factors for AD with microglial LD accumulation and neurotoxic microglial-derived factors, potentially providing novel therapeutic strategies for AD.

7.
Nat Aging ; 3(3): 275-296, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-37118426

RESUMO

Apolipoprotein E4 (APOE4) is the strongest known genetic risk factor for late-onset Alzheimer's disease (AD). Conditions of stress or injury induce APOE expression within neurons, but the role of neuronal APOE4 in AD pathogenesis is still unclear. Here we report the characterization of neuronal APOE4 effects on AD-related pathologies in an APOE4-expressing tauopathy mouse model. The selective genetic removal of APOE4 from neurons led to a significant reduction in tau pathology, gliosis, neurodegeneration, neuronal hyperexcitability and myelin deficits. Single-nucleus RNA-sequencing revealed that the removal of neuronal APOE4 greatly diminished neurodegenerative disease-associated subpopulations of neurons, oligodendrocytes, astrocytes and microglia whose accumulation correlated to the severity of tau pathology, neurodegeneration and myelin deficits. Thus, neuronal APOE4 plays a central role in promoting the development of major AD pathologies and its removal can mitigate the progressive cellular and tissue alterations occurring in this model of APOE4-driven tauopathy.


Assuntos
Doenças Neurodegenerativas , Tauopatias , Camundongos , Animais , Apolipoproteína E4/genética , Doenças Neurodegenerativas/genética , Bainha de Mielina/metabolismo , Gliose/genética , Tauopatias/genética , Neurônios/metabolismo
8.
Annu Rev Pathol ; 17: 73-99, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-34460318

RESUMO

Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder that involves dysregulation of many cellular and molecular processes. It is notoriously difficult to develop therapeutics for AD due to its complex nature. Nevertheless, recent advancements in imaging technology and the development of innovative experimental techniques have allowed researchers to perform in-depth analyses to uncover the pathogenic mechanisms of AD. An important consideration when studying late-onset AD is its major genetic risk factor, apolipoprotein E4 (apoE4). Although the exact mechanisms underlying apoE4 effects on AD initiation and progression are not fully understood, recent studies have revealed critical insights into the apoE4-induced deficits that occur in AD. In this review, we highlight notable studies that detail apoE4 effects on prominent AD pathologies, including amyloid-ß, tau pathology, neuroinflammation, and neural network dysfunction. We also discuss evidence that defines the physiological functions of apoE and outlines how these functions are disrupted in apoE4-related AD.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Humanos
9.
Cell Rep ; 37(13): 110159, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34965435

RESUMO

Specific classes of GABAergic neurons play specific roles in regulating information processing in the brain. In the hippocampus, two major classes, parvalbumin-expressing (PV+) and somatostatin-expressing (SST+), differentially regulate endogenous firing patterns and target subcellular compartments of principal cells. How these classes regulate the flow of information throughout the hippocampus is poorly understood. We hypothesize that PV+ and SST+ interneurons in the dentate gyrus (DG) and CA3 differentially modulate CA3 patterns of output, thereby altering the influence of CA3 on CA1. We find that while suppressing either interneuron class increases DG and CA3 output, the effects on CA1 were very different. Suppressing PV+ interneurons increases local field potential signatures of coupling from CA3 to CA1 and decreases signatures of coupling from entorhinal cortex to CA1; suppressing SST+ interneurons has the opposite effect. Thus, DG and CA3 PV+ and SST+ interneurons bidirectionally modulate the flow of information through the hippocampal circuit.


Assuntos
Região CA1 Hipocampal/fisiologia , Região CA3 Hipocampal/fisiologia , Giro Denteado/fisiologia , Córtex Entorrinal/fisiologia , Neurônios GABAérgicos/fisiologia , Interneurônios/fisiologia , Somatostatina/metabolismo , Potenciais de Ação , Animais , Região CA1 Hipocampal/citologia , Região CA3 Hipocampal/citologia , Giro Denteado/citologia , Córtex Entorrinal/citologia , Feminino , Neurônios GABAérgicos/citologia , Interneurônios/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
10.
Nat Neurosci ; 24(6): 786-798, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33958804

RESUMO

Selective neurodegeneration is a critical causal factor in Alzheimer's disease (AD); however, the mechanisms that lead some neurons to perish, whereas others remain resilient, are unknown. We sought potential drivers of this selective vulnerability using single-nucleus RNA sequencing and discovered that ApoE expression level is a substantial driver of neuronal variability. Strikingly, neuronal expression of ApoE-which has a robust genetic linkage to AD-correlated strongly, on a cell-by-cell basis, with immune response pathways in neurons in the brains of wild-type mice, human ApoE knock-in mice and humans with or without AD. Elimination or over-expression of neuronal ApoE revealed a causal relationship among ApoE expression, neuronal MHC-I expression, tau pathology and neurodegeneration. Functional reduction of MHC-I ameliorated tau pathology in ApoE4-expressing primary neurons and in mouse hippocampi expressing pathological tau. These findings suggest a mechanism linking neuronal ApoE expression to MHC-I expression and, subsequently, to tau pathology and selective neurodegeneration.


Assuntos
Doença de Alzheimer/metabolismo , Apolipoproteínas E/biossíntese , Antígenos de Histocompatibilidade Classe I/biossíntese , Neurônios/metabolismo , Regulação para Cima/fisiologia , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Apolipoproteínas E/genética , Células Cultivadas , Bases de Dados Genéticas/tendências , Feminino , Expressão Gênica , Técnicas de Introdução de Genes/métodos , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Degeneração Neural/genética , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Neurônios/patologia
12.
Nat Aging ; 1(10): 932-947, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-36172600

RESUMO

The evident genetic, pathological, and clinical heterogeneity of Alzheimer's disease (AD) poses challenges for traditional drug development. We conducted a computational drug repurposing screen for drugs to treat apolipoprotein (apo) E4-related AD. We first established apoE-genotype-dependent transcriptomic signatures of AD by analyzing publicly-available human brain database. We then queried these signatures against the Connectivity Map database containing transcriptomic perturbations of >1300 drugs to identify those that best reverse apoE-genotype-specific AD signatures. Bumetanide was identified as a top drug for apoE4 AD. Bumetanide treatment of apoE4 mice without or with Aß accumulation rescued electrophysiological, pathological, or cognitive deficits. Single-nucleus RNA-sequencing revealed transcriptomic reversal of AD signatures in specific cell types in these mice, a finding confirmed in apoE4-iPSC-derived neurons. In humans, bumetanide exposure was associated with a significantly lower AD prevalence in individuals over the age of 65 in two electronic health record databases, suggesting effectiveness of bumetanide in preventing AD.


Assuntos
Doença de Alzheimer , Camundongos , Humanos , Animais , Doença de Alzheimer/tratamento farmacológico , Apolipoproteína E4/genética , Bumetanida/farmacologia , Peptídeos beta-Amiloides/metabolismo , Reposicionamento de Medicamentos , Camundongos Transgênicos , Apolipoproteínas E/genética
13.
Cell Rep ; 32(4): 107962, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32726626

RESUMO

Despite its clear impact on Alzheimer's disease (AD) risk, apolipoprotein (apo) E4's contributions to AD etiology remain poorly understood. Progress in answering this and other questions in AD research has been limited by an inability to model human-specific phenotypes in an in vivo environment. Here we transplant human induced pluripotent stem cell (hiPSC)-derived neurons carrying normal apoE3 or pathogenic apoE4 into human apoE3 or apoE4 knockin mouse hippocampi, enabling us to disentangle the effects of apoE4 produced in human neurons and in the brain environment. Using single-nucleus RNA sequencing (snRNA-seq), we identify key transcriptional changes specific to human neuron subtypes in response to endogenous or exogenous apoE4. We also find that Aß from transplanted human neurons forms plaque-like aggregates, with differences in localization and interaction with microglia depending on the transplant and host apoE genotype. These findings highlight the power of in vivo chimeric disease modeling for studying AD.


Assuntos
Doença de Alzheimer/fisiopatologia , Apolipoproteína E4/metabolismo , Neurônios/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Apolipoproteína E3/farmacologia , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Encéfalo/metabolismo , Quimera/genética , Quimera/metabolismo , Técnicas de Introdução de Genes , Hipocampo/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/metabolismo , Modelos Biológicos , Proteínas tau/metabolismo
14.
Nat Med ; 24(3): 313-325, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29400714

RESUMO

An intronic GGGGCC repeat expansion in C9ORF72 is the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), but the pathogenic mechanism of this repeat remains unclear. Using human induced motor neurons (iMNs), we found that repeat-expanded C9ORF72 was haploinsufficient in ALS. We found that C9ORF72 interacted with endosomes and was required for normal vesicle trafficking and lysosomal biogenesis in motor neurons. Repeat expansion reduced C9ORF72 expression, triggering neurodegeneration through two mechanisms: accumulation of glutamate receptors, leading to excitotoxicity, and impaired clearance of neurotoxic dipeptide repeat proteins derived from the repeat expansion. Thus, cooperativity between gain- and loss-of-function mechanisms led to neurodegeneration. Restoring C9ORF72 levels or augmenting its function with constitutively active RAB5 or chemical modulators of RAB5 effectors rescued patient neuron survival and ameliorated neurodegenerative processes in both gain- and loss-of-function C9ORF72 mouse models. Thus, modulating vesicle trafficking was able to rescue neurodegeneration caused by the C9ORF72 repeat expansion. Coupled with rare mutations in ALS2, FIG4, CHMP2B, OPTN and SQSTM1, our results reveal mechanistic convergence on vesicle trafficking in ALS and FTD.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteína C9orf72/genética , Demência Frontotemporal/genética , Degeneração Neural/genética , Proteínas rab5 de Ligação ao GTP/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Expansão das Repetições de DNA/genética , Modelos Animais de Doenças , Endossomos/genética , Demência Frontotemporal/patologia , Regulação da Expressão Gênica/genética , Haploinsuficiência/genética , Humanos , Íntrons/genética , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Mutação , Degeneração Neural/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...