Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Biol ; 21(6): e3002164, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37379316

RESUMO

A defining property of circadian clocks is temperature compensation, characterized by the resilience of their near 24-hour free-running periods against changes in environmental temperature within the physiological range. While temperature compensation is evolutionary conserved across different taxa of life and has been studied within many model organisms, its molecular underpinnings remain elusive. Posttranscriptional regulations such as temperature-sensitive alternative splicing or phosphorylation have been described as underlying reactions. Here, we show that knockdown of cleavage and polyadenylation specificity factor subunit 6 (CPSF6), a key regulator of 3'-end cleavage and polyadenylation, significantly alters circadian temperature compensation in human U-2 OS cells. We apply a combination of 3'-end-RNA-seq and mass spectrometry-based proteomics to globally quantify changes in 3' UTR length as well as gene and protein expression between wild-type and CPSF6 knockdown cells and their dependency on temperature. Since changes in temperature compensation behavior should be reflected in alterations of temperature responses within one or all of the 3 regulatory layers, we statistically assess differential responses upon changes in ambient temperature between wild-type and CPSF6 knockdown cells. By this means, we reveal candidate genes underlying circadian temperature compensation, including eukaryotic translation initiation factor 2 subunit 1 (EIF2S1).


Assuntos
Relógios Circadianos , Animais , Humanos , Relógios Circadianos/genética , Ritmo Circadiano/genética , Mamíferos , Fatores de Poliadenilação e Clivagem de mRNA/genética , Fosforilação , Temperatura
2.
Nat Commun ; 14(1): 1201, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36882420

RESUMO

SNAIL is a key transcriptional regulator in embryonic development and cancer. Its effects in physiology and disease are believed to be linked to its role as a master regulator of epithelial-to-mesenchymal transition (EMT). Here, we report EMT-independent oncogenic SNAIL functions in cancer. Using genetic models, we systematically interrogated SNAIL effects in various oncogenic backgrounds and tissue types. SNAIL-related phenotypes displayed remarkable tissue- and genetic context-dependencies, ranging from protective effects as observed in KRAS- or WNT-driven intestinal cancers, to dramatic acceleration of tumorigenesis, as shown in KRAS-induced pancreatic cancer. Unexpectedly, SNAIL-driven oncogenesis was not associated with E-cadherin downregulation or induction of an overt EMT program. Instead, we show that SNAIL induces bypass of senescence and cell cycle progression through p16INK4A-independent inactivation of the Retinoblastoma (RB)-restriction checkpoint. Collectively, our work identifies non-canonical EMT-independent functions of SNAIL and unravel its complex context-dependent role in cancer.


Assuntos
Neoplasias Pancreáticas , Fatores de Transcrição da Família Snail , Carcinogênese , Transformação Celular Neoplásica , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas p21(ras) , Animais , Fatores de Transcrição da Família Snail/genética
4.
Science ; 366(6462)2019 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-31601740

RESUMO

The circadian clock drives daily changes of physiology, including sleep-wake cycles, through regulation of transcription, protein abundance, and function. Circadian phosphorylation controls cellular processes in peripheral organs, but little is known about its role in brain function and synaptic activity. We applied advanced quantitative phosphoproteomics to mouse forebrain synaptoneurosomes isolated across 24 hours, accurately quantifying almost 8000 phosphopeptides. Half of the synaptic phosphoproteins, including numerous kinases, had large-amplitude rhythms peaking at rest-activity and activity-rest transitions. Bioinformatic analyses revealed global temporal control of synaptic function through phosphorylation, including synaptic transmission, cytoskeleton reorganization, and excitatory/inhibitory balance. Sleep deprivation abolished 98% of all phosphorylation cycles in synaptoneurosomes, indicating that sleep-wake cycles rather than circadian signals are main drivers of synaptic phosphorylation, responding to both sleep and wake pressures.


Assuntos
Ritmo Circadiano , Fosfoproteínas/metabolismo , Prosencéfalo/metabolismo , Sono , Sinapses/metabolismo , Vigília , Animais , Relógios Circadianos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Fosfotransferases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...