Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomacromolecules ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743442

RESUMO

Over the years, synthetic hydrogels have proven remarkably useful as cell culture matrixes to elucidate the role of the extracellular matrix (ECM) on cell behavior. Yet, their lack of interconnected macropores undermines the widespread use of hydrogels in biomedical applications. To overcome this limitation, cryogels, a class of macroporous hydrogels, are rapidly emerging. Here, we introduce a new, highly elastic, and tunable synthetic cryogel, based on poly(isocyanopeptides) (PIC). Introduction of methacrylate groups on PIC facilitated cryopolymerization through free-radical polymerization and afforded cryogels with an interconnected macroporous structure. We investigated which cryogelation parameters can be used to tune the architectural and mechanical properties of the PIC cryogels by systematically altering cryopolymerization temperature, polymer concentration, and polymer molecular weight. We show that for decreasing cryopolymerization temperatures, there is a correlation between cryogel pore size and stiffness. More importantly, we demonstrate that by simply varying the polymer concentration, we can selectively tune the compressive strength of PIC cryogels without affecting their architecture. This unique feature is highly useful for biomedical applications, as it facilitates decoupling of stiffness from other variables such as pore size. As such, PIC cryogels provide an interesting new biomaterial for scientists to unravel the role of the ECM in cellular functions.

2.
ACS Appl Mater Interfaces ; 16(20): 25773-25787, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38739686

RESUMO

Patients diagnosed with advanced prostate cancer (PCa) often experience incurable bone metastases; however, a lack of relevant experimental models has hampered the study of disease mechanisms and the development of therapeutic strategies. In this study, we employed the recently established Temperature-based Easy-separable (TempEasy) 3D cell coculture system to investigate PCa bone metastasis. Through coculturing PCa and bone cells for 7 days, our results showed a reduction in PCa cell proliferation, an increase in neovascularization, and an enhanced metastasis potential when cocultured with bone cells. Additionally, we observed increased cell proliferation, higher stemness, and decreased bone matrix protein expression in bone cells when cocultured with PCa cells. Furthermore, we demonstrated that the stiffness of the extracellular matrix had a negligible impact on molecular responses in both primary (PCa cells) and distant malignant (bone cells) sites. The TempEasy 3D hydrogel coculture system is an easy-to-use and versatile coculture system that provides valuable insights into the mechanisms of cell-cell communication and interaction in cancer metastasis.


Assuntos
Neoplasias Ósseas , Proliferação de Células , Técnicas de Cocultura , Hidrogéis , Neoplasias da Próstata , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Humanos , Masculino , Neoplasias Ósseas/secundário , Neoplasias Ósseas/patologia , Neoplasias Ósseas/metabolismo , Hidrogéis/química , Linhagem Celular Tumoral , Animais
3.
Nat Commun ; 15(1): 2930, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575640

RESUMO

Gradient matters with hierarchical structures endow the natural world with excellent integrity and diversity. Currently, direct ink writing 3D printing is attracting tremendous interest, and has been used to explore the fabrication of 1D and 2D hierarchical structures by adjusting the diameter, spacing, and angle between filaments. However, it is difficult to generate complex 3D gradient matters owing to the inherent limitations of existing methods in terms of available gradient dimension, gradient resolution, and shape fidelity. Here, we report a filament diameter-adjustable 3D printing strategy that enables conventional extrusion 3D printers to produce 1D, 2D, and 3D gradient matters with tunable heterogeneous structures by continuously varying the volume of deposited ink on the printing trajectory. In detail, we develop diameter-programmable filaments by customizing the printing velocity and height. To achieve high shape fidelity, we specially add supporting layers at needed locations. Finally, we showcase multi-disciplinary applications of our strategy in creating horizontal, radial, and axial gradient structures, letter-embedded structures, metastructures, tissue-mimicking scaffolds, flexible electronics, and time-driven devices. By showing the potential of this strategy, we anticipate that it could be easily extended to a variety of filament-based additive manufacturing technologies and facilitate the development of functionally graded structures.

4.
ACS Appl Bio Mater ; 7(5): 3258-3270, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38593039

RESUMO

Reliable in vitro models closely resembling native tissue are urgently needed for disease modeling and drug screening applications. Recently, conductive biomaterials have received increasing attention in the development of in vitro models as they permit exogenous electrical signals to guide cells toward a desired cellular response. Interestingly, they have demonstrated that they promote cellular proliferation and adhesion even without external electrical stimulation. This paper describes the development of a conductive, fully synthetic hydrogel based on hybrids of the peptide-modified polyisocyanide (PIC-RGD) and the relatively conductive poly(aniline-co-N-(4-sulfophenyl)aniline) (PASA) and its suitability as the in vitro matrix. We demonstrate that incorporating PASA enhances the PIC-RGD hydrogel's electroactive nature without significantly altering the fibrous architecture and nonlinear mechanics of the PIC-RGD network. The biocompatibility of our model was assessed through phenotyping cultured human foreskin fibroblasts (HFF) and murine C2C12 myoblasts. Immunofluorescence analysis revealed that PIC-PASA hydrogels inhibit the fibrotic behavior of HFFs while promoting myogenesis in C2C12 cells without electrical stimulation. The composite PIC-PASA hydrogel can actively change the cell fate of different cell types, providing an attractive tool to improve skin and muscle repair.


Assuntos
Materiais Biocompatíveis , Hidrogéis , Teste de Materiais , Hidrogéis/química , Hidrogéis/farmacologia , Humanos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/síntese química , Animais , Camundongos , Desenvolvimento Muscular/efeitos dos fármacos , Fibrose/tratamento farmacológico , Tamanho da Partícula , Fibroblastos/efeitos dos fármacos , Linhagem Celular , Estrutura Molecular , Proliferação de Células/efeitos dos fármacos , Condutividade Elétrica
5.
Adv Healthc Mater ; 13(8): e2302905, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38219051

RESUMO

The suboptimal outcomes of pelvic organ prolapse (POP) surgery illustrate the demand for improved therapies. However, their development is hampered by the limited knowledge on the cellular pathophysiology of POP. Current investigations, that are limited to tissues and 2D in vitro models, provide highly inconclusive results on how the extracellular matrix (ECM) metabolism and fibroblasts are affected in POP. This study uses a physiologically relevant 3D in vitro model to investigate the cellular pathophysiology of POP by determining the differences between POP and non-POP fibroblasts on ECM metabolism, proliferation, and fibroblast-to-myofibroblast (FMT) transition. This model, based on the synthetic and biomimetic polyisocyanide hydrogel, enables the incorporation of mechanical loading, which simulates the forces exerted on the pelvic floor. Under static conditions, 3D cultured POP fibroblasts are less proliferative, undergo FMT, and exhibit lower collagen and elastin contents compared to non-POP fibroblasts. However, under mechanical loading, the differences between POP and non-POP fibroblasts are less pronounced. This study contributes to the development of more comprehensive models that can accurately mimic the POP pathophysiology, which will aid in an enhanced understanding and may contribute to improved therapies in the future.


Assuntos
Colágeno , Prolapso de Órgão Pélvico , Humanos , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Prolapso de Órgão Pélvico/metabolismo , Prolapso de Órgão Pélvico/cirurgia , Fibroblastos/metabolismo , Células Cultivadas
6.
Biomater Adv ; 156: 213705, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38006784

RESUMO

Fibrosis is characterized by the formation of fibrous connective tissue in response to primary injury. As a result, an affected organ may lose part of its functionality due to chronic, organ-specific tissue damage. Since fibrosis is a leading cause of death worldwide, targeting fibrotic diseases with antifibrotic hydrogels can be a lifesaving therapeutic strategy. This study developed a novel hybrid antifibrotic hydrogel by combining the synthetic polyisocyanide (PIC) with hyaluronic acid (HA). Gels of PIC are highly tailorable, thermosensitive, and strongly biomimetic in architecture and mechanical properties, whereas HA is known to promote non-fibrotic fetal wound healing and inhibits inflammatory signaling. The developed HA-PIC hybrids were biocompatible with physical properties comparable to those of the PIC gels. The antifibrotic nature of the gels was assessed by 3D cultures of human foreskin fibroblasts in the presence (or absence as control) of TGFß1 that promotes differentiation into myofibroblasts, a critical step in fibrosis. Proliferation and macroscopic contraction assays and studies on the formation of stress fibers and characteristic fibrosis markers all indicate a strong antifibrotic nature of HA-PIC hydrogel. We showed that these effects originate from both the lightly crosslinked architecture and the presence of HA itself. The hybrid displaying both these effects shows the strongest antifibrotic nature and is a promising candidate for use as in vivo treatment for skin fibrosis.


Assuntos
Ácido Hialurônico , Hidrogéis , Humanos , Hidrogéis/farmacologia , Ácido Hialurônico/farmacologia , Fibroblastos , Miofibroblastos , Fibrose
7.
Biomaterials ; 302: 122337, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37793268

RESUMO

In pelvic organ prolapse (POP) patients, the uterus, bladder and/or rectum descends into vagina due to weakened support tissues. High recurrence rates after POP surgery suggest an urgent need for improved surgical outcomes. Our aim is to promote connective tissue healing that results in stimulated tissue support functions by surgically applying a hydrogel functionalized with biological cues. We used known vaginal wound healing promoting factors (basic fibroblast growth factor, ß-estradiol, adipose-derived stem cells) in the biomimetic and injectable polyisocyanide (PIC) hydrogel, which in itself induces regenerative vaginal fibroblast behavior. The regenerative capacity of injected PIC hydrogel, and the additional pro-regenerative effects of these bioactive factors was evaluated in abdominal wounds in rabbits. Assessment of connective tissue healing (tensile testing, histology, immunohistochemistry) revealed that injection with all PIC formulations resulted in a statistically significant stiffness and collagen increase over time, in contrast to sham. Histological evaluation indicated new tissue growth with moderate to mild immune activity at the hydrogel - tissue interface. The results suggest that PIC injection in an abdominal wound improves healing towards regaining load-bearing capacity, which encourages us to investigate application of the hydrogel in a more translational vaginal model for POP surgery in sheep.


Assuntos
Hidrogéis , Cicatrização , Feminino , Humanos , Coelhos , Animais , Ovinos , Hidrogéis/farmacologia , Colágeno/metabolismo , Vagina/metabolismo , Tecido Conjuntivo
8.
Adv Healthc Mater ; 12(27): e2301109, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37526214

RESUMO

With its involvement in cell proliferation, migration and differentiation basic fibroblast growth factor (bFGF) has great potential for tissue engineering purposes. So far, however, clinical translation of soluble bFGF-based therapies is unsuccessful, because the required effective doses are often supraphysiological, which may cause adverse effects. An effective solution is growth factor immobilization, whereby bFGF retains its bioactivity at increased efficacy. Studied carriers include films, solid scaffolds, and particles, as well as natural and synthetic hydrogels. However, these synthetic hydrogels poorly resemble the characteristics of the native extracellular matrix (ECM). In this work, bFGF is covalently conjugated to the synthetic, but highly biocompatible, polyisocyanide-based hydrogel (PIC-bFGF), which closely mimics the architecture and mechanical properties of the ECM. The growth factor conjugation protocol is straightforward and readily extrapolated to other growth factors or proteins. The PIC-bFGF hydrogel shows a prolonged bioactivity up to 4 weeks although no clear effects on the ECM metabolism are observed. Beyond the future potential of the PIC-bFGF hydrogel toward various tissue engineering applications, this work underlines that simple biological conjugation procedures are a powerful strategy to induce additional bioactivity in 3D synthetic cell culture matrices.


Assuntos
Fator 2 de Crescimento de Fibroblastos , Hidrogéis , Hidrogéis/farmacologia , Hidrogéis/metabolismo , Fator 2 de Crescimento de Fibroblastos/farmacologia , Fator 2 de Crescimento de Fibroblastos/metabolismo , Matriz Extracelular/metabolismo , Engenharia Tecidual/métodos , Neovascularização Fisiológica
9.
ACS Appl Bio Mater ; 6(9): 3759-3767, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37589427

RESUMO

There is an urgent need for improved outcomes in the treatment of pelvic organ prolapse (POP). Success of primary surgery relies on the load bearing capacity of plicated connective tissue underneath the vaginal wall, which is compromised due to an altered vaginal fibroblast function and collagen composition. There is an important factor in connective tissue repair that relates to changes in stiffness of the vaginal fibroblast microenvironment, which influences cell activity through cellular mechanosensing. The aim of this study is to investigate the effect of stiffness changes on vaginal fibroblast functions that relate to connective tissue healing in prolapse repair. The substrate stiffness was controlled by changing the polymer concentration in the fibrous and strongly biomimetic polyisocyanide (PIC) hydrogel. We analyzed stiffness during cell culture and assessed the consequential fibroblast proliferation, morphology, collagen deposition, and contraction. Our results show that increasing stiffness coincides with vaginal fibroblast alignment, promotes collagen deposition, and inhibits PIC gel contraction. These findings suggest that the matrix stiffness directly influences vaginal fibroblast functionality. Moreover, we observed a buildup in stiffness and collagen, with an enhanced fibroblast and collagen organization on the PIC-substrate, which indicate an enhanced structural integrity of the hydrogel-cell construct. An improved tissue structure during healing is relevant in the functional repair of POP. Therefore, this study encourages future research in the use of PIC gels as a supplement in prolapse surgery, whereby the hydrogel stiffness should be considered.


Assuntos
Fibroblastos , Hidrogéis , Feminino , Humanos , Hidrogéis/farmacologia , Biomimética , Polímeros
10.
Proc Natl Acad Sci U S A ; 120(15): e2216934120, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37011188

RESUMO

Cells continuously sense external forces from their microenvironment, the extracellular matrix (ECM). In turn, they generate contractile forces, which stiffen and remodel this matrix. Although this bidirectional mechanical exchange is crucial for many cell functions, it remains poorly understood. Key challenges are that the majority of available matrices for such studies, either natural or synthetic, are difficult to control or lack biological relevance. Here, we use a synthetic, yet highly biomimetic hydrogel based on polyisocyanide (PIC) polymers to investigate the effects of the fibrous architecture and the nonlinear mechanics on cell-matrix interactions. Live-cell rheology was combined with advanced microscopy-based approaches to understand the mechanisms behind cell-induced matrix stiffening and plastic remodeling. We demonstrate how cell-mediated fiber remodeling and the propagation of fiber displacements are modulated by adjusting the biological and mechanical properties of this material. Moreover, we validate the biological relevance of our results by demonstrating that cellular tractions in PIC gels develop analogously to those in the natural ECM. This study highlights the potential of PIC gels to disentangle complex bidirectional cell-matrix interactions and to improve the design of materials for mechanobiology studies.


Assuntos
Matriz Extracelular , Hidrogéis , Matriz Extracelular/fisiologia , Comunicação Celular
11.
Tissue Eng Part B Rev ; 29(4): 429-440, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37051705

RESUMO

Surgical outcomes of pelvic organ prolapse (POP) surgery are poor, resulting in a 20% recurrence risk. Following the hypothesis that impaired wound healing is the main determinant of recurrent POP, growth factors have the potential to promote wound healing and may improve surgical outcomes. In this study, we systematically reviewed the effect of growth factors on vaginal wound healing in both in vitro and animal studies. For each independent comparison, the standardized mean difference and 95% CI were calculated using the Hedges' g correction. Of the 3858 retrieved studies, seven studies were included, of which six were included in meta-analysis (three in vitro studies and four in vivo studies). In vitro, basic fibroblast growth factor (bFGF) promotes proliferation, differentiation, and collagen types I and III production. Epidermal growth factor stimulates proliferation and connective tissue growth factor promotes Tenascin-C expression. These effects, however, are less pronounced in vivo; only bFGF slightly promotes collagen production. The review shows that growth factors, particularly bFGF, are able to promote vaginal wound healing in vitro. The uncertain in vivo findings suggest that preclinical models should be improved. The ultimate goal is to develop effective growth factor-supplemented therapies that improve surgical outcomes for POP.


Assuntos
Colágeno , Cicatrização , Animais , Feminino , Colágeno/farmacologia
12.
Biomater Adv ; 141: 213104, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36116187

RESUMO

Pelvic organ prolapse (POP) is the descent of the bladder, uterus, and/or rectum into the vagina. POP is associated with altered vaginal fibroblast functionality and connective tissue composition in the vaginal wall. The results of surgical intervention are poor, which may be related to the lack of true restoration of the connective tissue. An innovative treatment addresses tissue repair after surgery by the introduction of a bioactive supplement that enhances the healing process through collagen and elastin deposition. As a novel strategy, we first studied the effects in an in vitro model. Here, we investigate how the presence of cell binding GRGDS (RGD) peptides on the highly biomimetic polyisocyanide (PIC) gel facilitates and promotes the function of primary vaginal fibroblasts isolated from a POP patient. Fibroblast function was analyzed in terms of morphology, proliferation, and extracellular matrix (ECM) deposition and remodeling. RGD modification of the gel facilitated cell spread and proliferation. Quantitative outcomes of the ECM content indicated increased production of collagen and elastin by fibroblasts on gels with the highest RGD density. The in vitro results suggest that PIC-RGD hydrogel application may translate into improved connective tissue healing in the pelvic floor, which is essential for its use as a regeneration promoting additive in surgery.


Assuntos
Elastina , Prolapso de Órgão Pélvico , Colágeno/farmacologia , Elastina/metabolismo , Feminino , Fibroblastos/metabolismo , Humanos , Hidrogéis/metabolismo , Prolapso de Órgão Pélvico/cirurgia , Peptídeos/metabolismo , Vagina/cirurgia
13.
Adv Mater ; 34(37): e2202057, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35792703

RESUMO

The materials properties of biological tissues are unique. Nature is able to spatially and temporally manipulate (mechanical) properties while maintaining responsiveness toward a variety of cues; all without majorly changing the material's composition. Artificial mimics, synthetic or biomaterial-based are far less advanced and poorly reproduce the natural cell microenvironment. A viable strategy to generate materials with advanced properties combines different materials into nanocomposites. This work describes nanocomposites of a synthetic fibrous hydrogel, based on polyisocyanide (PIC), that is noncovalently linked to a responsive cross-linker. The introduction of the cross-linker transforms the PIC gel from a static fibrous extracellular matrix mimic to a highly dynamic material that maintains biocompatibility, as demonstrated by in situ modification of the (non)linear mechanical properties and efficient self-healing properties. Key in the material design is cross-linking at the fibrillar level using nanoparticles, which, simultaneously may be used to introduce more advanced properties.


Assuntos
Hidrogéis , Nanocompostos , Adaptação Psicológica , Materiais Biocompatíveis , Matriz Extracelular
14.
Small ; 18(27): e2203033, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35665598

RESUMO

In vivo, natural biomaterials are frequently anisotropic, exhibiting directional microstructures and mechanical properties. It remains challenging to develop such anisotropy in synthetic materials. Here, a facile one-step approach for in situ fabrication of hydrogels with hierarchically anisotropic architectures and direction-dependent mechanical properties is proposed. The anisotropic hydrogels, composed of a fibrous gel network (0.1 wt%), cross-linked with magnetic nanoparticles (spheres, rods, and wires, <0.1 wt%) are readily formed in the presence of very low magnetic fields (<20 mT). The anisotropy of the nanoparticles is transduced to the polymer network, leading to macroscopic anisotropy, for instance, in mechanical properties. Electrostatic repulsion by the negatively charged nanoparticles induces an additional layer of order in the material, perpendicular to the magnetic field direction. The straightforward fabrication strategy allows for stepwise deposition of layers with different degrees or directions of anisotropy, which enables the formation of complex structures that are able to mimic some of the complex hierarchical architectures found in biology. It is anticipated that this approach of hydrogel alignment may serve as a guide for designing advanced biomaterials in tissue engineering.


Assuntos
Biomimética , Hidrogéis , Anisotropia , Materiais Biocompatíveis/química , Hidrogéis/química , Engenharia Tecidual
15.
ACS Appl Mater Interfaces ; 14(17): 19212-19225, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35468292

RESUMO

The driving factors causing fibrosis and scar formation include fibroblast differentiation into myofibroblasts and hampered myofibroblast apoptosis, which ultimately results in collagen accumulation and tissue contraction. Currently, only very few drugs are available for fibrosis treatment, and there is an urgent demand for new pharmaceutical products. High-throughput in vitro fibrosis models are necessary to develop such drugs. In this study, we developed such a novel model based on synthetic polyisocyanide (PIC-RGD) hydrogels. The model not only measures contraction but also allows for subsequent molecular and cellular analysis. Fibroblasts were seeded in small (10 µL) PIC-RGD gels in the absence or presence of TGFß1, the latter to induce myofibroblast differentiation. The contraction model clearly differentiates fibroblasts and myofibroblasts. Besides a stronger contraction, we also observed α-smooth muscle actin (αSMA) production and higher collagen deposition for the latter. The results were supported by mRNA expression experiments of αSMA, Col1α1, P53, and Ki67. As proof of principle, the effects of FDA-approved antifibrotic drugs nintedanib and pirfenidone were tested in our newly developed fibrosis model. Both drugs clearly reduce myofibroblast-induced contraction. Moreover, both drugs significantly decrease myofibroblast viability. Our low-volume synthetic PIC-RGD hydrogel platform is an attractive tool for high-throughput in vitro antifibrotic drug screening.


Assuntos
Fibroblastos , Miofibroblastos , Actinas/metabolismo , Diferenciação Celular , Células Cultivadas , Colágeno/metabolismo , Fibroblastos/metabolismo , Fibrose , Humanos , Hidrogéis/metabolismo , Hidrogéis/farmacologia , Oligopeptídeos/farmacologia
16.
Nat Mater ; 21(4): 390-397, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35361951

RESUMO

Recent far-reaching advances in synthetic biology have yielded exciting tools for the creation of new materials. Conversely, advances in the fundamental understanding of soft-condensed matter, polymers and biomaterials offer new avenues to extend the reach of synthetic biology. The broad and exciting range of possible applications have substantial implications to address grand challenges in health, biotechnology and sustainability. Despite the potentially transformative impact that lies at the interface of synthetic biology and biomaterials, the two fields have, so far, progressed mostly separately. This Perspective provides a review of recent key advances in these two fields, and a roadmap for collaboration at the interface between the two communities. We highlight the near-term applications of this interface to the development of hierarchically structured biomaterials, from bioinspired building blocks to 'living' materials that sense and respond based on the reciprocal interactions between materials and embedded cells.


Assuntos
Materiais Biocompatíveis , Biologia Sintética , Polímeros
17.
Adv Healthc Mater ; 11(10): e2102389, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35029325

RESUMO

Interactions between different cell types are crucial for their behavior in tissues, but are rarely considered in 3D in vitro cell culture experiments. One reason is that such coculture experiments are sometimes difficult to perform in 3D or require specialized equipment or know-how. Here, a new 3D cell coculture system is introduced, TempEasy, which is readily applied in any cell culture lab. The matrix material is based on polyisocyanide hydrogels, which closely resemble the mechanical characteristics of the natural extracellular matrix. Gels with different gelation temperatures, seeded with different cells, are placed on top of each other to form an indirect coculture. Cooling reverses gelation, allowing cell harvesting from each layer separately, which benefits downstream analysis. To demonstrate the potential of TempEasy , human adipose stem cells (hADSCs) with vaginal epithelial fibroblasts are cocultured. The analysis of a 7-day coculture shows that hADSCs promote cell-cell interaction of fibroblasts, while fibroblasts promote proliferation and differentiation of hADSCs. TempEasy provides a straightforward operational platform for indirect cocultures of cells of different lineages in well-defined microenvironments.


Assuntos
Hidrogéis , Células-Tronco , Diferenciação Celular , Técnicas de Cocultura , Feminino , Humanos , Hidrogéis/metabolismo , Temperatura
18.
Bioact Mater ; 9: 316-331, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34820573

RESUMO

Three-dimensional (3D) matrix models using hydrogels are powerful tools to understand and predict cell behavior. The interactions between the cell and its matrix, however is highly complex: the matrix has a profound effect on basic cell functions but simultaneously, cells are able to actively manipulate the matrix properties. This (mechano)reciprocity between cells and the extracellular matrix (ECM) is central in regulating tissue functions and it is fundamentally important to broadly consider the biomechanical properties of the in vivo ECM when designing in vitro matrix models. This manuscript discusses two commonly used biopolymer networks, i.e. collagen and fibrin gels, and one synthetic polymer network, polyisocyanide gel (PIC), which all possess the characteristic nonlinear mechanics in the biological stress regime. We start from the structure of the materials, then address the uses, advantages, and limitations of each material, to provide a guideline for tissue engineers and biophysicists in utilizing current materials and also designing new materials for 3D cell culture purposes.

19.
Nano Lett ; 21(16): 6740-6747, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34387494

RESUMO

The mechanical environment of a cell is not constant. This dynamic behavior is exceedingly difficult to capture in (synthetic) in vitro matrices. This paper describes a novel, highly adaptive hybrid hydrogel composed of magnetically sensitive magnetite nanorods and a stress-responsive synthetic matrix. Nanorod rearrangement after application of (small) magnetic fields induces strain in the network, which results in a strong (over 10-fold) stiffening even at minimal (2.5 wt %) nanorod concentrations. Moreover, the stiffening mechanism yields a fast and fully reversible response. In the manuscript, we quantitatively analyze that forces generated by the particles are comparable to cellular forces. We demonstrate the value of magnetic stiffening in a 3D MCF10A epithelial cell experiment, where simply culturing on top of a permanent magnet gives rise to changes in the cell morphology. This work shows that our hydrogels are uniquely suited as 3D cell culture systems with on-demand adaptive mechanical properties.


Assuntos
Técnicas de Cultura de Células , Hidrogéis , Fenômenos Magnéticos , Magnetismo , Estresse Mecânico
20.
J Phys Chem B ; 125(29): 8219-8224, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34279949

RESUMO

Polyisocyanotripeptides (TriPIC) are biomimetic polymers which consist of a ß-helical backbone stabilized by hydrogen bonds between amide groups. Their oligoethylene glycol side chains give aqueous TriPIC solutions a thermoresponsive behavior: at 50 °C the solution becomes a hydrogel. In this paper we study the molecular structure and water dynamics of TriPIC aqueous solutions while undergoing gelation using FT-IR spectroscopy and polarization-resolved femtosecond infrared spectroscopy (fs-IR). We find evidence that the oligoethylene glycol side chains trap part of the water molecules upon gel formation, and we propose that the interaction between the oligoethylene glycol side chains and water plays an essential role in the bundling of the polymers and thus in the formation of a hydrogel.


Assuntos
Hidrogéis , Água , Ligação de Hidrogênio , Estrutura Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...