RESUMO
The present review will focus on the role of chloride anion in cardiovascular disease, with special emphasis in the development of hypertensive disease and vascular inflammation. It is known that acute and chronic overload of sodium chloride increase blood pressure and have pro-inflammatory and pro-fibrotic effects on different target organs, but it is unknown how chloride may influence these processes. Chloride anion is the predominant anion in the extracellular fluid and its intracellular concentration is dynamically regulated. As the queen of the electrolytes, it is of crucial importance to understand the physiological mechanisms that regulate the cellular handling of this anion including the different transporters and cellular chloride channels, which exert a variety of functions, such as regulation of cellular proliferation, differentiation, migration, apoptosis, intracellular pH and cellular redox state. In this article, we will also review the relationship between dietary, serum and intracellular chloride and how these different sources of chloride in the organism are affected in hypertension and their impact on cardiovascular disease. Additionally, we will discuss the approach of potential strategies that affect chloride handling and its potential effect on cardiovascular system, including pharmacological blockade of chloride channels and non-pharmacological interventions by replacing chloride by another anion.
Assuntos
Canais de Cloreto/metabolismo , Cloretos/metabolismo , Hipertensão/etiologia , Animais , Humanos , Hipertensão/metabolismoRESUMO
Natriuretic peptides have long been known for their cardiovascular function. However, a growing body of evidence emphasizes the role of natriuretic peptides in the energy metabolism of several substrates in humans and animals, thus interrelating the heart, as an endocrine organ, with various insulin-sensitive tissues and organs such as adipose tissue, muscle skeletal, and liver. Adipose tissue dysfunction is associated with altered regulation of the natriuretic peptide system, also indicated as a natriuretic disability. Evidence points to a contribution of this natriuretic disability to the development of obesity, type 2 diabetes mellitus, and cardiometabolic complications; although the causal relationship is not fully understood at present. However, targeting the natriuretic peptide pathway may improve metabolic health in obesity and type 2 diabetes mellitus. This review will focus on the current literature on the metabolic functions of natriuretic peptides with emphasis on lipid metabolism and insulin sensitivity. Natriuretic peptide system alterations could be proposed as one of the linking mechanisms between adipose tissue dysfunction and cardiovascular disease.
Assuntos
Tecido Adiposo/metabolismo , Sistema Cardiovascular/metabolismo , Resistência à Insulina , Metabolismo dos Lipídeos , Peptídeos Natriuréticos/metabolismo , Animais , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/metabolismo , HumanosRESUMO
ABSTRACT: The aim of the present work was to examine whether metabolic syndrome-like conditions in rats with fructose (F) overload modify the cardiotoxic effects induced by doxorubicin (DOX) and whether the treatment altered the expression of P-gp, breast cancer resistance protein, and organic cation/carnitine transporters in the heart. Male Sprague-Dawley rats received either tap water (control group [C]; n = 16) or water with F 10% wt/vol (n = 16) during 8 weeks. Three days before being killed, the animals received a single dose of DOX (6 mg/kg, ip, md) (C-DOX and F-DOX groups) or vehicle (VEH; ISS 1 mL/kg BW; ip) (C-VEH and F-VEH groups) (n = 8 per group). F overload enhanced thiobarbituric acid-reactive substance levels in the left ventricle, and DOX injection further increased those values. DOX did not alter thiobarbituric acid-reactive substance production in C animals. DOX caused a decrease of 30% in the ejection fraction and a nearly 40% reduction in the fractional shortening in F animals, but not in C rats. Cardiac tissue levels of P-gp decreased by about 30% in F rats compared with the C groups. DOX did not modify cardiac P-gp expression. Breast cancer resistance protein and organic cation/carnitine transporter (OCTN 1/2/3) protein levels did not change with either F or DOX. It is suggested that DOX could cause greater cardiotoxicity in rats receiving F, probably due to enhanced cardiac lipid peroxidation and lower expression of cardiac P-gp. These results support the hypothesis that the cardiotoxicity of DOX could be increased under metabolic syndrome-like conditions or in other health disorders that involve cardiovascular risk factors.
Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Antibióticos Antineoplásicos , Doxorrubicina , Cardiopatias/induzido quimicamente , Síndrome Metabólica/complicações , Miocárdio/metabolismo , Estresse Oxidativo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Cardiotoxicidade , Modelos Animais de Doenças , Cardiopatias/metabolismo , Cardiopatias/patologia , Cardiopatias/fisiopatologia , Peroxidação de Lipídeos , Masculino , Síndrome Metabólica/metabolismo , Miocárdio/patologia , Proteínas de Transporte de Cátions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Ratos Sprague-Dawley , Função Ventricular Esquerda/efeitos dos fármacosRESUMO
Chronic kidney disease (CKD) represents a growing public health problem associated with loss of kidney function and cardiovascular disease (CVD), the main leading cause of morbidity and mortality in CKD. It is well established that CKD is associated with gut dysbiosis. Over the past few years, there has been a growing interest in studying the composition of the gut microbiota in patients with CKD as well as the mechanisms by which gut dysbiosis contributes to CKD progression, in order to identify possible therapeutic targets to improve the morbidity and survival in CKD. The purpose of this review is to explore the clinical evidence and the mechanisms involved in the gut-kidney crosstalk as well as the possible interventions to restore a normal balance of the gut microbiota in CKD. It is well known that the influence of the gut microbiota on the gut-kidney axis acts in a reciprocal way: on the one hand, CKD significantly modifies the composition and functions of the gut microbiota. On the other hand, gut microbiota is able to manipulate the processes leading to CKD onset and progression through inflammatory, endocrine, and neurologic pathways. Understanding the complex interaction between these two organs (gut microbiota and kidney) may provide novel nephroprotective interventions to prevent the progression of CKD by targeting the gut microbiota. The review is divided into three main sections: evidences from clinical studies about the existence of a gut microbiota dysbiosis in CKD; the complex mechanisms that explain the bidirectional relationship between CKD and gut dysbiosis; and reports regarding the effects of prebiotic, probiotic, and synbiotic supplementation to restore gut microbiota balance in CKD.
Assuntos
Microbioma Gastrointestinal/fisiologia , Trato Gastrointestinal/microbiologia , Rim/microbiologia , Insuficiência Renal Crônica/microbiologia , Animais , Disbiose/microbiologia , Humanos , Inflamação/microbiologiaRESUMO
AIM: To determine the effect of tempol in normal rats fed high salt on arterial pressure and the balance between antagonist components of the renal renin-angiotensin system. METHODS: Sprague-Dawley rats were fed with 8% NaCl high-salt (HS) or 0.4% NaCl (normal-salt, NS) diet for 3 wk, with or without tempol (T) (1 mmol/L, administered in drinking water). Mean arterial pressure (MAP), glomerular filtration rate (GFR), and urinary sodium excretion (UVNa) were measured. We evaluated angiotensin II (Ang II), angiotensin 1-7 (Ang 1-7), angiotensin converting enzyme 2 (ACE2), mas receptor (MasR), angiotensin type 1 receptor (AT1R) and angiotensin type 2 receptor (AT2R) in renal tissues by immunohistochemistry. RESULTS: The intake of high sodium produced a slight but significant increase in MAP and differentially regulated components of the renal renin-angiotensin system (RAS). This included an increase in Ang II and AT1R, and decrease in ACE-2 staining intensity using immunohistochemistry. Antioxidant supplementation with tempol increased natriuresis and GFR, prevented changes in blood pressure and reversed the imbalance of renal RAS components. This includes a decrease in Ang II and AT1R, as increase in AT2, ACE2, Ang (1-7) and MasR staining intensity using immunohistochemistry. In addition, the natriuretic effects of tempol were observed in NS-T group, which showed an increased staining intensity of AT2, ACE2, Ang (1-7) and MasR. CONCLUSION: These findings suggest that a high salt diet leads to changes in the homeostasis and balance between opposing components of the renal RAS in hypertension to favour an increase in Ang II. Chronic antioxidant supplementation can modulate the balance between the natriuretic and antinatriuretic components of the renal RAS.
RESUMO
Fluid homeostasis, blood pressure and redox balance in the kidney are regulated by an intricate interaction between local and systemic anti-natriuretic and natriuretic systems. Intrarenal dopamine plays a central role on this interactive network. By activating specific receptors, dopamine promotes sodium excretion and stimulates anti-oxidant and anti-inflammatory pathways. Different pathological scenarios where renal sodium excretion is dysregulated, as in nephrotic syndrome, hypertension and renal inflammation, can be associated with impaired action of renal dopamine including alteration in biosynthesis, dopamine receptor expression and signal transduction. Given its properties on the regulation of renal blood flow and sodium excretion, exogenous dopamine has been postulated as a potential therapeutic strategy to prevent renal failure in critically ill patients. The aim of this review is to update and discuss on the most recent findings about renal dopaminergic system and its role in several diseases involving the kidneys and the potential use of dopamine as a nephroprotective agent.
RESUMO
Sodium metabolism by the kidney is accomplished by an intricate interaction between signals from extrarenal and intrarenal sources and between antinatriuretic and natriuretic factors. Renal dopamine plays a central role in this interactive network. The natriuretic hormones, such as the atrial natriuretic peptide, mediate some of their effects by affecting the renal dopaminergic system. Renal dopaminergic tonus can be modulated at different steps of dopamine metabolism (synthesis, uptake, release, catabolism, and receptor sensitization) which can be regulated by the atrial natriuretic peptide. At tubular level, dopamine and atrial natriuretic peptide act together in a concerted manner to promote sodium excretion, especially through the overinhibition of Na+, K+-ATPase activity. In this way, different pathological scenarios where renal sodium excretion is dysregulated, as in nephrotic syndrome or hypertension, are associated with impaired action of renal dopamine and/or atrial natriuretic peptide, or as a result of impaired interaction between these two natriuretic systems. The aim of this review is to update and comment on the most recent evidences demonstrating how the renal dopaminergic system interacts with atrial natriuretic peptide to control renal physiology and blood pressure through different regulatory pathways.