Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Lett ; 25(11): 2372-2383, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36209497

RESUMO

Two controversial tenets of metapopulation biology are whether patch quality and the surrounding matrix are more important to turnover (colonisation and extinction) than biogeography (patch area and isolation) and whether factors governing turnover during equilibrium also dominate nonequilibrium dynamics. We tested both tenets using 18 years of surveys for two secretive wetland birds, black and Virginia rails, during (1) a period of equilibrium with stable occupancy and (2) after drought and arrival of West Nile Virus (WNV), which resulted in WNV infections in rails, increased extinction and decreased colonisation probabilities modified by WNV, nonequilibrium dynamics for both species and occupancy decline for black rails. Area (primarily) and isolation (secondarily) drove turnover during both stable and unstable metapopulation dynamics, greatly exceeding the effects of patch quality and matrix conditions. Moreover, slopes between turnover and patch characteristics changed little between equilibrium and nonequilibrium, confirming the overriding influences of biogeographic factors on turnover.


Assuntos
Ecossistema , Modelos Biológicos , Animais , Dinâmica Populacional , Aves , Áreas Alagadas
2.
Ecology ; 100(6): e02711, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30927267

RESUMO

Understanding how metapopulations persist in dynamic working landscapes requires assessing the behaviors of key actors that change patches as well as intrinsic factors driving turnover. Coupled human and natural systems (CHANS) research uses a multidisciplinary approach to identify the key actors, processes, and feedbacks that drive metapopulation and landscape dynamics. We describe a framework for modeling metapopulations in CHANS that integrates ecological and social data by coupling stochastic patch occupancy models of metapopulation dynamics with agent-based models of land-use change. We then apply this framework to metapopulations of the threatened black rail (Laterallus jamaicensis) and widespread Virginia rail (Rallus limicola) that inhabit patchy, irrigation-fed wetlands in the rangelands of the California Sierra Nevada foothills. We collected data from five diverse sources (rail occupancy surveys, land-use change mapping, a survey of landowner decision making, climate and reservoir databases, and mosquito trapping and West Nile virus testing) and integrated them into an agent-based stochastic patch occupancy model. We used the model to (1) quantify the drivers of metapopulation dynamics, and the potential interactions and feedbacks among them; (2) test predictions of the behavior of metapopulations in dynamic working landscapes; and (3) evaluate the impact of three policy options on metapopulation persistence (irrigation district water cutbacks during drought, incentives for landowners to create wetlands, and incentives for landowners to protect wetlands). Complex metapopulation dynamics emerged when landscapes functioned as CHANS, highlighting the importance of integrating human activities and other ecological processes into metapopulation models. Rail metapopulations were strongly top-down regulated by precipitation, and the black rail's decade-long decline was caused by the combination of West Nile virus and drought. Theoretical predictions of the two metapopulations' responses to dynamic landscapes and incentive programs were complicated by heterogeneity in patch quality and CHANS couplings, respectively. Irrigation cutbacks during drought posed a serious extinction risk that neither incentive policy effectively ameliorated.


Assuntos
Ecologia , Modelos Biológicos , Animais , Aves , California , Ecossistema , Humanos , Dinâmica Populacional
3.
Am J Trop Med Hyg ; 99(1): 222-228, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29714160

RESUMO

Anthropogenic land use change, including agriculture, can alter mosquito larval habitat quality, increase mosquito abundance, and increase incidence of vector-borne disease. Rice is a staple food crop for more than half of the world's population, with ∼1% of global production occurring within the United States (US). Flooded rice fields provide enormous areas of larval habitat for mosquito species and may be hotspots for mosquito-borne pathogens, including West Nile virus (WNV). West Nile virus was introduced into the Americas in 1999 and causes yearly epidemics in the US with an average of approximately 1,400 neuroinvasive cases and 130 deaths per year. We examined correlations between rice cultivation and WNV disease incidence in rice-growing regions within the US. Incidence of WNV disease increased with the fraction of each county under rice cultivation in California but not in the southern US. We show that this is likely due to regional variation in the mosquitoes transmitting WNV. Culex tarsalis was an important vector of WNV in California, and its abundance increased with rice cultivation, whereas in rice-growing areas of the southern US, the dominant WNV vector was Culex quinquefasciatus, which rarely breeds in rice fields. These results illustrate how cultivation of particular crops can increase disease risk and how spatial variation in vector ecology can alter the relationship between land cover and disease.


Assuntos
Culex/virologia , Larva/virologia , Mosquitos Vetores/virologia , Oryza/crescimento & desenvolvimento , Febre do Nilo Ocidental/epidemiologia , Vírus do Nilo Ocidental/fisiologia , Agricultura/métodos , Animais , California/epidemiologia , Produtos Agrícolas/crescimento & desenvolvimento , Humanos , Incidência , Densidade Demográfica , Especificidade da Espécie , Febre do Nilo Ocidental/transmissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...