Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 11(19)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36230221

RESUMO

This study aimed to investigate the ways in which the thermal behavior, composition, and volatile compound contents of roasted coffee beans depend on variety and roasting intensity. The thermal analysis revealed various transformations in coffee composition, namely, drying, water loss, and decomposition of polysaccharides, lipids, amino acids, and proteins. The results showed that volatile compounds are released differently in coffee depending on coffee type and degree of roasting. The most abundant volatile compounds present in the samples were 2-butanone, furan, 2-methylfuran, methyl formate, 2.3-pentanedione, methylpyrazine, acetic acid, furfural, 5-methyl furfural, and 2-furanmethanol. The total polyphenol contents ranged between 13.3 and 18.9 g gallic acid/kg, being slightly higher in Robusta than in Arabica varieties and in more intensely roasted beans compared to medium-roasted beans. The Robusta variety has higher mineral contents than Arabica, and the contents of most minerals (K, Ca, Mg, Fe, Cu, P, N, and S) increased with roasting intensity. Discrimination between coffee varieties and roasting intensities is possible based on mineral and polyphenol contents.

2.
Molecules ; 27(12)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35745064

RESUMO

Increased concentrations of heavy metals in the environment are of public health concern, their removal from waters receiving considerable interest. The aim of this paper was to study the simultaneous adsorption of heavy metals (Cu, Cd, Cr, Ni, Zn and Pb) from aqueous solutions using the zeolitic volcanic tuffs as adsorbents. The effect of thermal treatment temperature, particle size and initial metal concentrations on the metal ions sorption was investigated. The selectivity of used zeolite for the adsorption of studied heavy metals followed the order: Pb > Cr > Cu > Zn > Cd > Ni. The removal efficiency of the heavy metals was strongly influenced by the particle sizes, the samples with smaller particle size (0−0.05 mm) being more efficient in heavy metals removal than those with larger particle size (1−3 mm). Generally, no relevant changes were observed in heavy metals removal efficiency for the treatment temperatures of 200 °C and 350 °C. Moreover, at a higher temperature (550 °C), a decrease in the removal efficiencies was observed. The Cd, Zn, Cu, Cr, Zn and Ni sorption was best described by Langmuir model according to the high values of correlation coefficient. The pseudo-first-order kinetic model presented the best correlation of the experimental data.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Zeolitas , Adsorção , Cádmio/análise , Chumbo , Metais Pesados/análise , Romênia , Água , Poluentes Químicos da Água/análise , Zinco/análise
3.
Molecules ; 27(11)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35684443

RESUMO

In the present work, the capability of the volcanic tuff from Macicasu (Romania) to remove ammonia (NH3) from air with different contamination levels during 24 h of adsorption experiments was investigated. The natural zeolitic volcanic tuff was characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), the Brunauer-Emmett-Teller (BET) method, inductively coupled plasma optical emission spectrometry (ICP-OES), and thermogravimetric analysis (TGA). The adsorption capacities varied between 0.022 mg NH3 g-1 zeolite and 0.282 mg NH3 g-1 zeolite, depending on the NH3 concentrations in the air and at the contact time. The nonlinear forms of the Langmuir and Freundlich isotherm models were used to fit the experimental data. Additionally, the adsorption of NH3 was studied using nonlinear pseudo-first-order (PFO), pseudo-second-order (PSO), and Elovich kinetic model. Based on the total volume of pores of used volcanic tuff, the NH3 was removed from the air both due to the physical adsorption of NH3 gas and the ion exchange of NH4+ (resulted from a reaction between NH3 and H2O adsorbed by the zeolite). Depending on the initial NH3 concentration and the amount of volcanic tuff, the NH3 concentrations can be reduced below the threshold of this contaminant in the air. The adsorption capacity of NH3 per unit of zeolite (1 g) varied in the range of 0.022-0.282 mg NH3 g-1 depending on the NH3 concentration in the air.


Assuntos
Poluentes Químicos da Água , Zeolitas , Adsorção , Amônia , Cinética , Romênia , Poluentes Químicos da Água/química , Zeolitas/química
4.
Microorganisms ; 10(2)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35208709

RESUMO

In this study, the effect of common non-steroidal anti-inflammatory drugs on Lycopersicon esculentum rhizosphere microbiota was monitored. The experiments were performed with artificially contaminated soil with ibuprofen (0.5 mg·kg-1), ketoprofen (0.2 mg·kg-1) and diclofenac (0.7 mg·kg-1). The results evidenced that the rhizosphere microbiota abundance decreased especially under exposure to diclofenac (187-201 nmol·g-1 dry weight soil) and ibuprofen (166-183 nmol·g-1 dry weight soil) if compared with control (185-240 nmol·g-1 dry weight soil), while the fungal/bacteria ratio changed significantly with exposure to diclofenac (<27%) and ketoprofen (<18%). Compared with control samples, the average amount of the ratio of Gram-negative/Gram-positive bacteria was higher in rhizosphere soil contaminated with ibuprofen (>25%) and lower in the case of diclofenac (<46%) contamination. Carbon source consumption increased with the time of assay in case of the control samples (23%) and those contaminated with diclofenac (8%). This suggests that rhizosphere microbiota under contamination with diclofenac consume a higher amount of carbon, but they do not consume a larger variety of its sources. In the case of contamination with ibuprofen and ketoprofen, the consumption of carbon source presents a decreasing tendency after day 30 of the assay. Rhizosphere microbiota emitting volatile organic compounds were also monitored. Volatile compounds belonging to alcohol, aromatic compounds, ketone, terpene, organic acids, aldehyde, sulphur compounds, esters, alkane, nitrogen compounds, alkene and furans were detected in rhizosphere soil samples. Among these, terpene, ketone, alcohol, aromatic compounds, organic acids and alkane were the most abundant compound classes (>75%), but their percentage changed with exposure to diclofenac, ketoprofen and ibuprofen. Such changes in abundance, structure and the metabolic activity of Lycopersicon esculentum rhizosphere microbiota under exposure to common non-steroidal anti-inflammatory drugs suggest that there is a probability to also change the ecosystem services provided by rhizosphere microbiota.

5.
Sci China Life Sci ; 62(8): 1047-1057, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31290101

RESUMO

Leaf nitrogen (N) and phosphorus (P) concentrations are critical for photosynthesis, growth, reproduction and other ecological processes of plants. Previous studies on large-scale biogeographic patterns of leaf N and P stoichiometric relationships were mostly conducted using data pooled across taxa, while family/genus-level analyses are rarely reported. Here, we examined global patterns of family-specific leaf N and P stoichiometry using a global data set of 12,716 paired leaf N and P records which includes 204 families, 1,305 genera, and 3,420 species. After determining the minimum size of samples (i.e., 35 records), we analyzed leaf N and P concentrations, N:P ratios and N∼P scaling relationships of plants for 62 families with 11,440 records. The numeric values of leaf N and P stoichiometry varied significantly across families and showed diverse trends along gradients of mean annual temperature (MAT) and mean annual precipitation (MAP). The leaf N and P concentrations and N:P ratios of 62 families ranged from 6.11 to 30.30 mg g-1, 0.27 to 2.17 mg g-1, and 10.20 to 35.40, respectively. Approximately 1/3-1/2 of the families (22-35 of 62) showed a decrease in leaf N and P concentrations and N:P ratios with increasing MAT or MAP, while the remainder either did not show a significant trend or presented the opposite pattern. Family-specific leaf N∼P scaling exponents did not converge to a certain empirical value, with a range of 0.307-0.991 for 54 out of 62 families which indicated a significant N∼P scaling relationship. Our results for the first time revealed large variation in the family-level leaf N and P stoichiometry of global terrestrial plants and that the stoichiometric relationships for at least one-third of the families were not consistent with the global trends reported previously. The numeric values of the family-specific leaf N and P stoichiometry documented in the current study provide critical synthetic parameters for biogeographic modeling and for further studies on the physiological and ecological mechanisms underlying the nutrient use strategies of plants from different phylogenetic taxa.


Assuntos
Nitrogênio/metabolismo , Fósforo/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Plantas/metabolismo , Bases de Dados Factuais , Ecossistema , Modelos Estatísticos , Fotossíntese , Filogenia , Solo , Estereoisomerismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...