Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 93(10): 1050-1058, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30754379

RESUMO

Brown stem rot (BSR)-resistant and -susceptible soybean accessions were continuously cropped in an area never previously seeded to soybean to study the influence of monocultures on soil and stem populations of Phialophora gregata f. sp. sojae. P. gregata f. sp. sojae population size and genotype composition were determined by dilution plating, isolation of P. gregata f. sp. sojae and standard polymerase chain reaction (PCR), and by quantitative real-time PCR (q-PCR. In general, the sizes of P. gregata f. sp. sojae populations in soil were similar regardless of monoculture. The percentage of P. gregata f. sp. sojae genotype B was greater than A in soil following the monoculture of both BSR-susceptible and -resistant soybean accessions. Following the monoculture of a BSR-resistant accession, the percentage of P. gregata f. sp. sojae genotype B was greater than A. Overall, P. gregata f. sp. sojae populations in stems of a BSR-susceptible accession were greater than those in stems of a BSR-resistant accession. P. gregata f. sp. sojae genotype B was detected more often than A in stems of both resistant and susceptible accessions planted following a BSR-resistant monoculture. P. gregata f. sp. sojae genotype B was also detected more often than A in stems of a BSR-resistant accession planted following a BSR-susceptible monoculture. P. gregata f. sp. sojae genotypes A and B were isolated at similar frequencies from stems of a BSR-susceptible accession planted following a BSR-susceptible monoculture. However, q-PCR results indicate that the percentage of P. gregata f. sp. sojae genotype A was greater than B in stems of a BSR-susceptible accession planted following a BSR-susceptible monoculture. Among BSR-susceptible accessions, those with the soybean cyst nematode (SCN)-resistant cv. Peking in their parentage had the largest populations of P. gregata f. sp. sojae and a greater percentage of P. gregata f. sp. sojae genotype B. Similar results were observed for BSR-resistant accessions derived from SCN-resistant PI 88788.

2.
Plant Dis ; 91(9): 1201, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30780671

RESUMO

In August of 2006, soybean (Glycine max (L.) Merr.) plants collected from Columbia, Dane, Green Lake, Walworth, Jefferson, and Waushara counties in southern Wisconsin exhibited symptoms typical of sudden death syndrome (SDS) caused by Fusarium virguliforme O'Donnell & Aoki [synonym F. solani (Mart.) Sacc. f. sp. glycines] (1). Foliar symptoms ranged from chlorotic spots to severe interveinal chlorosis and necrosis. Taproots of symptomatic plants were necrotic and stunted and stems exhibited a light tan discoloration, but never the dark brown discoloration typical for brown stem rot, a disease with similar foliar symptoms. Isolations from root and crown tissue of symptomatic plants were made using one-quarter-strength potato dextrose agar (PDA) amended with 100 ppm of streptomycin. Slow-growing, white-to-cream fungal colonies with blue and turquoise sporodochia were observed. Spores produced in sporodochia grown on PDA ranged in size from 32.5 to 70 µm long (average 53.1 µm) and 3 to 6 µm wide (average 4.4 µm) and with 3-5 septa (mode of 3). Isolates were characteristic of F. virguliforme based on colony morphology, spore morphology and size, and the absence of microconidia (3). The identity of F. virguliforme was confirmed by PCR amplification and DNA sequencing of the ITS, BT1, Act, and EF1B regions. All isolate sequences exhibited single nucleotide polymorphisms that matched the sequences of these regions of F. virguliforme. Koch's postulates were conducted to confirm that the causal agent of the observed symptoms was F. virguliforme. Inoculum of single-spore isolates was produced on sterilized sorghum seed. After 14 days of incubation at 20 to 22°C and a 12-h photoperiod, the sorghum seed was assayed to determine colonization incidence by transferring seeds to PDA. In all trials, sorghum seed was 100% infested. Infested sorghum seeds (35) were placed in potting soil at 2 cm beneath each seed of the susceptible soybean cv. Williams 82 (4). Noninfested sorghum seed was used for a noninoculated control. Three trials were performed, each using 15 replicates of several fungal isolates and 15 replicates of the noninoculated control. Plants were grown in water baths located in a greenhouse (trial 1) and in a growth chamber (trial 2) and both maintained at an average temperature of 25°C with a 14-h photoperiod (2). The third trial was conducted in the growth chamber without a water bath with the same temperature and light regimen. In all environments, inoculated plants developed chlorotic spots 14 days after planting. After 21 days, symptoms progressed to a range of chlorotic mottling to interveinal chlorosis and necrosis. Foliar and root symptoms that resembled those on the original plant samples infected with F. virguliforme appeared on 88% of inoculated plants. Isolates that resembled the original F. virguliforme were recovered from 75% of inoculated plants and from 88% of plants showing symptoms. No symptoms were observed and no isolates were recovered from noninoculated plants. There was a statistically significant difference between inoculated and control plants (P < 0.001) based on the presence of symptoms and isolation success using the Goodman χ2 analysis. The confirmation of the presence of SDS in five counties suggests that the disease is widespread in Wisconsin and could become a serious threat to soybean production in the future. References: (1) T. Akoi et al. Mycoscience 46:162, 2005. (2) R. Y. Hashmi et al. Online publication. doi:10.1094/PHP-2005-0906-01-RS. Plant Health Progress, 2005. (3) K. W. Roy et al. Plant Dis. 81:259, 1997. (4) J. C. Rupe et al. Can. J. Bot. 79:829, 2001.

3.
Plant Dis ; 90(4): 513-518, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30786603

RESUMO

Green stem disorder of soybean (Glycine max) is characterized by delayed senescence of stems with normal pod ripening and seed maturation. Three different field research approaches were designed to determine the relationship of green stem disorder to Bean pod mottle virus (BPMV) and other potential factors that may be involved in causing this disorder. The first research approach surveyed green stem disorder and BPMV in individual plants monitored in several commercial soybean fields during three growing seasons. Leaf samples from maturing plants (growth stage R6) were tested by enzyme-linked immunosorbent assay (ELISA) for BPMV. The percentage of monitored plants infected with BPMV at growth stage R6 in some fields was higher than the incidence of green stem disorder at harvest maturity. Many plants infected with BPMV did not develop green stem disorder, and conversely, many plants that had green stem disorder were not infected with BPMV. According to a chi-square test of independence, the data indicated that green stem disorder was independent of BPMV infection at growth stage R6 (P = 0.98). A second research approach compared green stem disorder incidence in an identical set of soybean entries planted in two locations with different levels of natural virus infection. Despite differences in virus infection, including BPMV incidence, 20 of 24 entries had similar green stem disorder incidence at the two locations. A third research approach completed over two growing seasons in field cages showed that green stem disorder developed without BPMV infection. BPMV infection did not increase green stem disorder incidence in comparison to controls. Bean leaf beetle, leaf hopper, or stinkbug feeding did not have an effect on the incidence of green stem disorder. The cause of the green stem disorder remains unknown.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...