Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Metab ; 6(3): 578-597, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38409604

RESUMO

Emerging evidence suggests that modulation of gut microbiota by dietary fibre may offer solutions for metabolic disorders. In a randomized placebo-controlled crossover design trial (ChiCTR-TTRCC-13003333) in 37 participants with overweight or obesity, we test whether resistant starch (RS) as a dietary supplement influences obesity-related outcomes. Here, we show that RS supplementation for 8 weeks can help to achieve weight loss (mean -2.8 kg) and improve insulin resistance in individuals with excess body weight. The benefits of RS are associated with changes in gut microbiota composition. Supplementation with Bifidobacterium adolescentis, a species that is markedly associated with the alleviation of obesity in the study participants, protects male mice from diet-induced obesity. Mechanistically, the RS-induced changes in the gut microbiota alter the bile acid profile, reduce inflammation by restoring the intestinal barrier and inhibit lipid absorption. We demonstrate that RS can facilitate weight loss at least partially through B. adolescentis and that the gut microbiota is essential for the action of RS.


Assuntos
Microbioma Gastrointestinal , Animais , Humanos , Masculino , Camundongos , Obesidade/microbiologia , Sobrepeso , Amido Resistente , Aumento de Peso , Redução de Peso , Estudos Cross-Over
2.
Gut Microbes ; 15(1): 2231596, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37424334

RESUMO

The gut microbiota is involved in the production of numerous metabolites that maintain host wellbeing. The assembly of the gut microbiome is highly dynamic, and influenced by many postnatal factors, moreover, little is known about the development of the gut metabolome. We showed that geography has an important influence on the microbiome dynamics in the first year of life based on two independent cohorts from China and Sweden. Major compositional differences since birth were the high relative abundance of Bacteroides in the Swedish cohort and Streptococcus in the Chinese cohort. We analyzed the development of the fecal metabolome in the first year of life in the Chinese cohort. Lipid metabolism, especially acylcarnitines and bile acids, was the most abundant metabolic pathway in the newborn gut. Delivery mode and feeding induced particular differences in the gut metabolome since birth. In contrast to C-section newborns, medium- and long-chain acylcarnitines were abundant at newborn age only in vaginally delivered infants, associated by the presence of bacteria such as Bacteroides vulgatus and Parabacteroides merdae. Our data provide a basis for understanding the maturation of the fecal metabolome and the metabolic role of gut microbiota in infancy.


Assuntos
Fezes , Microbioma Gastrointestinal , Humanos , Recém-Nascido , Lactente , China , Ácidos e Sais Biliares/metabolismo , Aminoácidos/metabolismo , Suécia , Bacteroides , Streptococcus , Fezes/microbiologia , Metabolismo dos Lipídeos , Comportamento Alimentar , Redes e Vias Metabólicas , Parto Obstétrico , Feminino , Gravidez , Cesárea , Estudos Longitudinais , Masculino
3.
Sci Data ; 10(1): 346, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37268699

RESUMO

Next generation amplicon sequencing has created a plethora of data from human microbiomes. The accessibility to this scientific data and its corresponding metadata is important for its reuse, to allow for new discoveries, verification of published results, and serving as path for reproducibility. Dietary fiber consumption has been associated with a variety of health benefits that are thought to be mediated by gut microbiota. To enable direct comparisons of the response of the gut microbiome to fiber, we obtained 16S rRNA sequencing data and its corresponding metadata from 11 fiber intervention studies for a total of 2,368 samples. We provide curated and pre-processed genetic data and common metadata for comparison across the different studies.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Fibras na Dieta , Microbiota/genética , Reprodutibilidade dos Testes , RNA Ribossômico 16S/genética
4.
Microbiol Spectr ; 11(3): e0510922, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37022171

RESUMO

Roux-en-Y gastric bypass surgery (RYGB) leads to improved glycemic control in individuals with severe obesity beyond the effects of weight loss alone. Here, We addressed the potential contribution of gut microbiota in mediating this favourable surgical outcome by using an established preclinical model of RYGB. 16S rRNA sequencing revealed that RYGB-treated Zucker fatty rats had altered fecal composition of various bacteria at the phylum and species levels, including lower fecal abundance of an unidentified Erysipelotrichaceae species, compared with both sham-operated (Sham) and body weight-matched to RYGB-treated (BWM) rats. Correlation analysis further revealed that fecal abundance of this unidentified Erysipelotrichaceae species linked with multiple indices of glycemic control uniquely in RYGB-treated rats. Sequence alignment of this Erysipelotrichaceae species identified Longibaculum muris to be the most closely related species, and its fecal abundance positively correlated with oral glucose intolerance in RYGB-treated rats. In fecal microbiota transplant experiments, the improved oral glucose tolerance of RYGB-treated compared with BWM rats could partially be transferred to recipient germfree mice, independently of body weight. Unexpectedly, providing L. muris as a supplement to RYGB recipient mice further improved oral glucose tolerance, while administering L. muris alone to chow-fed or Western style diet-challenged conventionally raised mice had minimal metabolic impact. Taken together, our findings provide evidence that the gut microbiota contributes to weight loss-independent improvements in glycemic control after RYGB and demonstrate how correlation of a specific gut microbiota species with a host metabolic trait does not imply causation. IMPORTANCE Metabolic surgery remains the most effective treatment modality for severe obesity and its comorbidities, including type 2 diabetes. Roux-en-Y gastric bypass (RYGB) is a commonly performed type of metabolic surgery that reconfigures gastrointestinal anatomy and profoundly remodels the gut microbiota. While it is clear that RYGB is superior to dieting when it comes to improving glycemic control, the extent to which the gut microbiota contributes to this effect remains untested. In the present study, we uniquely linked fecal Erysipelotrichaceae species, including Longibaculum muris, with indices of glycemic control after RYGB in genetically obese and glucose-intolerant rats. We further show that the weight loss-independent improvements in glycemic control in RYGB-treated rats can be transmitted via their gut microbiota to germfree mice. Our findings provide rare causal evidence that the gut microbiota contributes to the health benefits of metabolic surgery and have implications for the development of gut microbiota-based treatments for type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Derivação Gástrica , Microbioma Gastrointestinal , Obesidade Mórbida , Ratos , Camundongos , Animais , Obesidade Mórbida/microbiologia , Diabetes Mellitus Tipo 2/terapia , Diabetes Mellitus Tipo 2/microbiologia , RNA Ribossômico 16S/genética , Ratos Zucker , Obesidade/cirurgia , Redução de Peso
5.
Metabolism ; 138: 155341, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36341838

RESUMO

OBJECTIVE: The hypothalamus is the main integrator of peripheral and central signals in the control of energy homeostasis. Its functional relevance for the effectivity of bariatric surgery is not entirely elucidated. Studying the effects of bariatric surgery in patients with hypothalamic damage might provide insight. SUMMARY BACKGROUND DATA: Prospective study to analyze the effects of bariatric surgery in patients with hypothalamic obesity (HO) vs. matched patients with common obesity (CO) with and without bariatric surgery. METHODS: 65 participants were included (HO-surgery: n = 8, HO-control: n = 10, CO-surgery: n = 12, CO-control: n = 12, Lean-control: n = 23). Body weight, levels of anorexic hormones, gut microbiota, as well as subjective well-being/health status, eating behavior, and brain activity (via functional MRI) were evaluated. RESULTS: Patients with HO lost significantly less weight after bariatric surgery than CO-participants (total body weight loss %: 5.5 % vs. 26.2 %, p = 0.0004). After a mixed meal, satiety and abdominal fullness tended to be lowest in HO-surgery and did not correlate with levels of GLP-1 or PYY. Levels of PYY (11,151 ± 1667 pmol/l/h vs. 8099 ± 1235 pmol/l/h, p = 0.028) and GLP-1 (20,975 ± 2893 pmol/l/h vs. 13,060 ± 2357 pmol/l/h, p = 0.009) were significantly higher in the HO-surgery vs. CO-surgery group. Abundance of Enterobacteriaceae and Streptococcus was increased in feces of HO and CO after bariatric surgery. Comparing HO patients with lean-controls revealed an increased activation in insula and cerebellum to viewing high-caloric foods in left insula and cerebellum in fMRI. CONCLUSIONS: Hypothalamic integrity is necessary for the effectiveness of bariatric surgery in humans. Peripheral changes after bariatric surgery are not sufficient to induce satiety and long-term weight loss in patients with hypothalamic damage.


Assuntos
Cirurgia Bariátrica , Derivação Gástrica , Doenças Hipotalâmicas , Humanos , Estudos Prospectivos , Estudos Transversais , Redução de Peso/fisiologia , Obesidade/cirurgia , Peptídeo 1 Semelhante ao Glucagon , Hipotálamo
6.
Front Microbiol ; 12: 632454, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34248864

RESUMO

The human gastrointestinal tract is colonized by a diverse microbial community, which plays a crucial role in human health. In the gut, a protective mucus layer that consists of glycan structures separates the bacteria from the host epithelial cells. These host-derived glycans are utilized by bacteria that have adapted to this specific compound in the gastrointestinal tract. Our study investigated the close interaction between two distinct gut microbiota members known to use mucus glycans, the generalist Bacteroides thetaiotaomicron and the specialist Akkermansia muciniphila in vitro and in vivo. The in vitro study, in which mucin was the only nutrient source, indicated that B. thetaiotaomicron significantly upregulated genes coding for Glycoside Hydrolases (GHs) and mucin degradation activity when cultured in the presence of A. muciniphila. Furthermore, B. thetaiotaomicron significantly upregulated the expression of a gene encoding for membrane attack complex/perforin (MACPF) domain in co-culture. The transcriptome analysis also indicated that A. muciniphila was less affected by the environmental changes and was able to sustain its abundance in the presence of B. thetaiotaomicron while increasing the expression of LPS core biosynthesis activity encoding genes (O-antigen ligase, Lipid A and Glycosyl transferases) as well as ABC transporters. Using germ-free mice colonized with B. thetaiotaomicron and/or A. muciniphila, we observed a more general glycan degrading profile in B. thetaiotaomicron while the expression profile of A. muciniphila was not significantly affected when colonizing together, indicating that two different nutritional niches were established in mice gut. Thus, our results indicate that a mucin degrading generalist adapts to its changing environment, depending on available carbohydrates while a mucin degrading specialist adapts by coping with competing microorganism through upregulation of defense related genes.

7.
Adv Sci (Weinh) ; 8(16): e2100536, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34085773

RESUMO

Although obesity occurs in most of the patients with type 2 diabetes (T2D), a fraction of patients with T2D are underweight or have normal weight. Several studies have linked the gut microbiome to obesity and T2D, but the role of gut microbiota in lean individuals with T2D having unique clinical characteristics remains unclear. A metagenomic and targeted metabolomic analysis is conducted in 182 lean and abdominally obese individuals with and without newly diagnosed T2D. The abundance of Akkermansia muciniphila (A. muciniphila) significantly decreases in lean individuals with T2D than without T2D, but not in the comparison of obese individuals with and without T2D. Its abundance correlates inversely with serum 3ß-chenodeoxycholic acid (ßCDCA) levels and positively with insulin secretion and fibroblast growth factor 15/19 (FGF15/19) concentrations. The supplementation with A. muciniphila is sufficient to protect mice against high sucrose-induced impairment of glucose intolerance by decreasing ßCDCA and increasing insulin secretion and FGF15/19. Furthermore, ßCDCA inhibits insulin secretion and FGF15/19 expression. These findings suggest that decreased abundance of A. muciniphila is linked to the impairment of insulin secretion and glucose homeostasis in lean T2D, paving the way for new therapeutic options for the prevention or treatment of diabetes.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Homeostase , Secreção de Insulina , Magreza/metabolismo , Akkermansia/metabolismo , Animais , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/microbiologia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Obesidade/sangue , Obesidade/metabolismo , Obesidade/microbiologia , Magreza/sangue , Magreza/microbiologia
8.
Cell Host Microbe ; 29(5): 765-776.e3, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33794185

RESUMO

The gut is inhabited by a densely populated ecosystem, the gut microbiota, that is established at birth. However, the succession by which different bacteria are incorporated into the gut microbiota is still relatively unknown. Here, we analyze the microbiota from 471 Swedish children followed from birth to 5 years of age, collecting samples after 4 and 12 months and at 3 and 5 years of age as well as from their mothers at birth using 16S rRNA gene profiling. We also compare their microbiota to an adult Swedish population. Genera follow 4 different colonization patterns during establishment where Methanobrevibacter and Christensenellaceae colonize late and do not reached adult levels at 5 years. These late colonizers correlate with increased alpha diversity in both children and adults. By following the children through age-specific community types, we observe that children have individual dynamics in the gut microbiota development trajectory.


Assuntos
Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Microbioma Gastrointestinal , Adulto , Bactérias/classificação , Bactérias/genética , Desenvolvimento Infantil , Pré-Escolar , Estudos de Coortes , Fezes/microbiologia , Feminino , Humanos , Lactente , Masculino , Suécia , Adulto Jovem
9.
Sci Rep ; 10(1): 14977, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32917913

RESUMO

Gut mucosal microbes evolved closest to the host, developing specialized local communities. There is, however, insufficient knowledge of these communities as most studies have employed sequencing technologies to investigate faecal microbiota only. This work used shotgun metagenomics of mucosal biopsies to explore the microbial communities' compositions of terminal ileum and large intestine in 5 healthy individuals. Functional annotations and genome-scale metabolic modelling of selected species were then employed to identify local functional enrichments. While faecal metagenomics provided a good approximation of the average gut mucosal microbiome composition, mucosal biopsies allowed detecting the subtle variations of local microbial communities. Given their significant enrichment in the mucosal microbiota, we highlight the roles of Bacteroides species and describe the antimicrobial resistance biogeography along the intestine. We also detail which species, at which locations, are involved with the tryptophan/indole pathway, whose malfunctioning has been linked to pathologies including inflammatory bowel disease. Our study thus provides invaluable resources for investigating mechanisms connecting gut microbiota and host pathophysiology.


Assuntos
Bacteroides , Fezes/microbiologia , Microbioma Gastrointestinal , Íleo/microbiologia , Mucosa Intestinal/microbiologia , Intestino Grosso/microbiologia , Bacteroides/classificação , Bacteroides/genética , Bacteroides/metabolismo , Feminino , Humanos , Masculino
10.
Cell Rep ; 26(13): 3772-3783.e6, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30917328

RESUMO

The gut microbiota can modulate human metabolism through interactions with macronutrients. However, microbiota-diet-host interactions are difficult to study because bacteria interact in complex food webs in concert with the host, and many of the bacteria are not yet characterized. To reduce the complexity, we colonize mice with a simplified intestinal microbiota (SIM) composed of ten sequenced strains isolated from the human gut with complementing pathways to metabolize dietary fibers. We feed the SIM mice one of three diets (chow [fiber rich], high-fat/high-sucrose, or zero-fat/high-sucrose diets [both low in fiber]) and investigate (1) how dietary fiber, saturated fat, and sucrose affect the abundance and transcriptome of the SIM community, (2) the effect of microbe-diet interactions on circulating metabolites, and (3) how microbiota-diet interactions affect host metabolism. Our SIM model can be used in future studies to help clarify how microbiota-diet interactions contribute to metabolic diseases.


Assuntos
Dieta , Microbioma Gastrointestinal , Interações Hospedeiro-Patógeno , Animais , Feminino , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Masculino , Metaboloma , Camundongos , Transcriptoma
11.
J Proteome Res ; 18(3): 960-969, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30596429

RESUMO

Mutations in isocitrate dehydrogenase ( IDH) 1 are high-frequency events in low-grade glioma and secondary glioblastoma, and IDH1 mutant gliomas are vulnerable to interventions. Metabolic reprogramming is a hallmark of cancer. In this study, comprehensive metabolism investigation of clinical IDH1 mutant glioma specimens was performed to explore its specific metabolic reprogramming in real microenvironment. Massive metabolic alterations from glycolysis to lipid metabolism were identified in the IDH1 mutant glioma tissue when compared to IDH1 wild-type glioma. Of note, tricarboxylic acid (TCA) cycle intermediates were in similar levels in both groups, with more pyruvate found entering the TCA cycle in IDH1 mutant glioma. The pool of fatty acyl chains was also reduced, displayed as decreased triglycerides and sphingolipids, although membrane phosphatidyl lipids were not changed. The lower fatty acyl pool may be mediated by the lower protein expression levels of long-chain acyl-CoA synthetase 1 (ACSL1), ACSL4, and very long-chain acyl-CoA synthetase 3 (ACSVL3) in IDH1 mutant glioma. Lower ACSL1 was further found to contribute to the better survival of IDH1 mutant glioma patients based on the The Cancer Genome Atlas (TCGA) RNA sequencing data. Our research provides valuable insights into the tissue metabolism of human IDH1 mutant glioma and unravels new lipid-related targets.


Assuntos
Glioma/metabolismo , Isocitrato Desidrogenase/genética , Lipidômica , Metabolômica , Ciclo do Ácido Cítrico , Coenzima A Ligases/metabolismo , Glioma/genética , Glicólise , Humanos , Metabolismo dos Lipídeos , Mutação , Células Tumorais Cultivadas
12.
Eur J Nutr ; 58(6): 2365-2376, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30046942

RESUMO

PURPOSE: We previously showed that short-term intervention with barley kernel bread (BKB) improved glucose tolerance. However, glucose tolerance was not improved in a subset of individuals (non-responders) who were characterized by a low Prevotella/Bacteroides ratio. The purpose of the present study was to investigate if the baseline Prevotella/Bacteroides ratio can be used to stratify metabolic responders and non-responders to barley dietary fiber (DF). METHODS: Fecal samples were collected from 99 healthy humans with BMI < 28 kg/m2 between 50 and 70 years old. The abundance of fecal Prevotella and Bacteroides was quantified with 16S rRNA quantitative PCR. 33 subjects were grouped in three groups: subjects with highest Prevotella/Bacteroides ratios, "HP", n = 12; subjects with lowest Prevotella/Bacteroides ratios, "LP", n = 13; and subjects with high abundance of both measured bacteria, HPB, n = 8. A 3-day randomized crossover intervention with BKB and white wheat bread (control) was performed. Cardiometabolic test variables were analyzed the next day following a standardized breakfast. RESULTS: The BKB intervention lowered the blood glucose responses to the breakfast independently of Prevotella/Bacteroides ratios (P < 0.01). However, independently of intervention, the HP group displayed an overall lower insulin response and lower IL-6 concentrations compared with the LP group (P < 0.05). Furthermore, the groups HP and HPB showed lower hunger sensations compared to the LP group (P < 0.05). CONCLUSIONS: Here we show that the abundance of gut Prevotella and Bacteroides at baseline did not stratify metabolic responders and non-responders to barley DF intervention. However, our results indicate the importance of gut microbiota in host metabolic regulation, further suggesting that higher Prevotella/Bacteroides ratio may be favorable. CLINICALTRIALS. GOV ID: NCT02427555.


Assuntos
Grão Comestível/metabolismo , Microbioma Gastrointestinal , Hordeum/metabolismo , Prebióticos/administração & dosagem , Prevotella , Idoso , Estudos Cross-Over , Fezes/microbiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
13.
Am J Physiol Endocrinol Metab ; 316(3): E453-E463, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30562060

RESUMO

Dietary fibers, an integral part of the human diet, require the enzymatic activity of the gut microbiota for complete metabolism into short-chain fatty acids (SCFAs). SCFAs are important modulators of host metabolism and physiology and act in part as signaling molecules by activating G protein-coupled receptors (GPCRs), such as GPR41. Flaxseed fibers improve metabolism in rodents and mice, but their fermentation profiles, effects on enteroendocrine cells, and associated metabolic benefits are unknown. We fed GPR41-red fluorescent protein mice, an enteroendocrine reporter mouse strain, chow, high-fat diet (HFD), or HFD supplemented either with 10% nonfermentable fiber cellulose or fermentable flaxseed fibers for 12 wk to assess changes in cecal gut microbiota, enteroendocrine cell transcriptome in the ileum and colon, and physiological parameters. We observed that flaxseed fibers restructured the gut microbiota and promoted proliferation of the genera Bifidobacterium and Akkermansia compared with HFD. The shifts in cecal bacterial composition restored levels of the SCFAs butyrate similar to the chow diet, resulting in colonic but not ileal enteroendocrine cell transcriptional changes in genes related to cell cycle, mRNA, and protein transport compared with HFD. Consistent with the effects on enteroendocrine functions, flaxseed fibers also protected mice from diet-induced obesity, potentially by preventing a reduction in energy expenditure induced by an HFD. Our study shows that flaxseed fibers alter cecal microbial ecology, are fermented to SCFAs in the cecum, and modulate enteroendocrine cell transcriptome in the colon, which may contribute to their metabolically favorable phenotype.


Assuntos
Células Enteroendócrinas/metabolismo , Ácidos Graxos Voláteis/metabolismo , Fermentação , Linho/metabolismo , Microbioma Gastrointestinal , Obesidade/metabolismo , Transcriptoma , Animais , Bifidobacterium , Ceco/microbiologia , Celulose , Colo/citologia , Dieta Hiperlipídica , Fibras na Dieta , Feminino , Firmicutes , Íleo/citologia , Lactobacillus , Masculino , Camundongos , Receptores Acoplados a Proteínas G/metabolismo , Verrucomicrobia
14.
PLoS One ; 13(3): e0195161, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29601608

RESUMO

Network analysis of large metagenomic datasets generated by current sequencing technologies can reveal significant co-occurrence patterns between microbial species of a biological community. These patterns can be analyzed in terms of pairwise combinations between all species comprising a community. Here, we construct a co-occurrence network for abundant microbial species encompassing the three dominant phyla found in human gut. This was followed by an in vitro evaluation of the predicted microbe-microbe co-occurrences, where we chose species pairs Bifidobacterium adolescentis and Bacteroides thetaiotaomicron, as well as Faecalibacterium prausnitzii and Roseburia inulinivorans as model organisms for our study. We then delineate the outcome of the co-cultures when equal distributions of resources were provided. The growth behavior of the co-culture was found to be dependent on the types of microbial species present, their specific metabolic activities, and resulting changes in the culture environment. Through this reductionist approach and using novel in vitro combinations of microbial species under anaerobic conditions, the results of this work will aid in the understanding and design of synthetic community formulations.


Assuntos
Bactérias/crescimento & desenvolvimento , Microbioma Gastrointestinal , Bactérias/genética , Técnicas de Cocultura , Humanos
15.
PLoS One ; 12(11): e0181693, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29166392

RESUMO

An altered intestinal microbiota composition has been implicated in the pathogenesis of metabolic disease including obesity and type 2 diabetes mellitus (T2DM). Low grade inflammation, potentially initiated by the intestinal microbiota, has been suggested to be a driving force in the development of insulin resistance in obesity. Here, we report that bacterial DNA is present in mesenteric adipose tissue of obese but otherwise healthy human subjects. Pyrosequencing of bacterial 16S rRNA genes revealed that DNA from the Gram-negative species Ralstonia was most prevalent. Interestingly, fecal abundance of Ralstonia pickettii was increased in obese subjects with pre-diabetes and T2DM. To assess if R. pickettii was causally involved in development of obesity and T2DM, we performed a proof-of-concept study in diet-induced obese (DIO) mice. Compared to vehicle-treated control mice, R. pickettii-treated DIO mice had reduced glucose tolerance. In addition, circulating levels of endotoxin were increased in R. pickettii-treated mice. In conclusion, this study suggests that intestinal Ralstonia is increased in obese human subjects with T2DM and reciprocally worsens glucose tolerance in DIO mice.


Assuntos
Intolerância à Glucose/complicações , Intolerância à Glucose/microbiologia , Infecções por Bactérias Gram-Negativas/microbiologia , Intestinos/microbiologia , Obesidade/complicações , Obesidade/microbiologia , Ralstonia pickettii/fisiologia , Idoso , Animais , DNA Bacteriano/análise , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/microbiologia , Dieta Hiperlipídica , Fezes/microbiologia , Feminino , Infecções por Bactérias Gram-Negativas/patologia , Humanos , Inflamação/complicações , Inflamação/patologia , Intestinos/patologia , Gordura Intra-Abdominal/microbiologia , Gordura Intra-Abdominal/patologia , Masculino , Camundongos Endogâmicos C57BL
16.
Dig Dis ; 35(3): 246-250, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28249261

RESUMO

BACKGROUND: The gut microbiota has a substantial impact on health and disease. The human gut microbiota influences the development and progression of metabolic diseases; however, the underlying mechanisms are not fully understood. The nuclear farnesoid X receptor (FXR), which regulates bile acid homeostasis and glucose and lipid metabolism, is activated by primary human and murine bile acids, chenodeoxycholic acid and cholic acid, while rodent specific primary bile acids tauromuricholic acids antagonise FXR activation. The gut microbiota deconjugates and subsequently metabolises primary bile acids into secondary bile acids in the gut and thereby changes FXR activation and signalling. Key Message: Mouse models have been used to study the crosstalk between bile acids and the gut microbiota, but the substantial differences in bile acid composition between humans and mice need to be considered when interpreting data from such studies and for the development of so-called humanised mouse models. CONCLUSION: It is of special importance to elucidate how a human gut microbiota influences bile acid composition and FXR signalling in colonised mice.


Assuntos
Ácidos e Sais Biliares/metabolismo , Microbioma Gastrointestinal , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais , Animais , Bactérias/metabolismo , Ácidos e Sais Biliares/biossíntese , Ácidos e Sais Biliares/química , Humanos , Camundongos , Modelos Biológicos
17.
J Lipid Res ; 58(2): 412-419, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27956475

RESUMO

The gut microbiota influences the development and progression of metabolic diseases partly by metabolism of bile acids (BAs) and modified signaling through the farnesoid X receptor (FXR). In this study, we aimed to determine how the human gut microbiota metabolizes murine BAs and affects FXR signaling in colonized mice. We colonized germ-free mice with cecal content from a mouse donor or feces from a human donor and euthanized the mice after short-term (2 weeks) or long-term (15 weeks) colonization. We analyzed the gut microbiota and BA composition and expression of FXR target genes in ileum and liver. We found that cecal microbiota composition differed between mice colonized with mouse and human microbiota and was stable over time. Human and mouse microbiota reduced total BA levels similarly, but the humanized mice produced less secondary BAs. The human microbiota was able to reduce the levels of tauro-ß-muricholic acid and induce expression of FXR target genes Fgf15 and Shp in ileum after long-term colonization. We show that a human microbiota can change BA composition and induce FXR signaling in colonized mice, but the levels of secondary BAs produced are lower than in mice colonized with a mouse microbiota.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Microbioma Gastrointestinal/genética , Doenças Metabólicas/genética , Proteínas do Tecido Nervoso/genética , Proteínas de Ligação a RNA/metabolismo , Animais , Ácidos e Sais Biliares/metabolismo , Fezes/microbiologia , Fatores de Crescimento de Fibroblastos/genética , Humanos , Íleo/metabolismo , Íleo/microbiologia , Mucosa Intestinal/metabolismo , Intestinos/microbiologia , Fígado/metabolismo , Fígado/microbiologia , Doenças Metabólicas/metabolismo , Doenças Metabólicas/microbiologia , Doenças Metabólicas/patologia , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Ligação a RNA/agonistas , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/genética , Ácido Taurocólico/análogos & derivados , Ácido Taurocólico/metabolismo
18.
PLoS One ; 11(12): e0167837, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27959892

RESUMO

During the insulin resistant phase of pregnancy, the mRNA expression of free fatty acid 2 receptor (Ffar2) is upregulated and as we recently reported, this receptor contributes to insulin secretion and pancreatic beta cell mass expansion in order to maintain normal glucose homeostasis during pregnancy. As impaired gestational glucose levels can affect metabolic health of offspring, we aimed to explore the role of maternal Ffar2 expression during pregnancy on the metabolic health of offspring and also the effects of antibiotics, which have been shown to disrupt gut microbiota fermentative activity (the source of the FFA2 ligands) on gestational glucose homeostasis. We found that maternal Ffar2 expression and impaired glucose tolerance during pregnancy had no effect on the growth rates, ad lib glucose and glucose tolerance in the offspring between 3 and 6 weeks of age. To disrupt short chain fatty acid production, we chronically treated WT mice and Ffar2-/- mice with broad range antibiotics and further compared their glucose tolerance prior to pregnancy and at gestational day 15, and also quantified cecum and plasma SCFAs. We found that during pregnancy antibiotic treatment reduced the levels of SCFAs in the cecum of the mice, but resulted in elevated levels of plasma SCFAs and altered concentrations of individual SCFAs. Along with these changes, gestational glucose tolerance in WT mice, but not Ffar2-/- mice improved while on antibiotics. Additional data showed that gestational glucose tolerance worsened in Ffar2-/- mice during a second pregnancy. Together, these results indicate that antibiotic treatment alone is inadequate to deplete plasma SCFA concentrations, and that modulation of gut microbiota by antibiotics does not disrupt the contribution of FFA2 to gestational glucose tolerance.


Assuntos
Antibacterianos/efeitos adversos , Intolerância à Glucose/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Glicemia/metabolismo , Ácidos Graxos Voláteis/sangue , Ácidos Graxos Voláteis/metabolismo , Feminino , Intolerância à Glucose/etiologia , Masculino , Camundongos , Gravidez , Receptores Acoplados a Proteínas G/genética
19.
Cell Metab ; 24(1): 151-7, 2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27411015

RESUMO

Beneficial effects of dietary fiber on glucose and energy homeostasis have long been described, focusing mostly on the production of short-chain fatty acids by the gut commensal bacteria. However, bacterial fermentation of dietary fiber also produces large amounts of succinate and, to date, no study has focused on the role of succinate on host metabolism. Here, we fed mice a fiber-rich diet and found that succinate was the most abundant carboxylic acid in the cecum. Dietary succinate was identified as a substrate for intestinal gluconeogenesis (IGN), a process that improves glucose homeostasis. Accordingly, dietary succinate improved glucose and insulin tolerance in wild-type mice, but those effects were absent in mice deficient in IGN. Conventional mice colonized with the succinate producer Prevotella copri exhibited metabolic benefits, which could be related to succinate-activated IGN. Thus, microbiota-produced succinate is a previously unsuspected bacterial metabolite improving glycemic control through activation of IGN.


Assuntos
Gluconeogênese/efeitos dos fármacos , Glucose/metabolismo , Homeostase/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Microbiota , Ácido Succínico/farmacologia , Animais , Ceco/efeitos dos fármacos , Ceco/metabolismo , Comportamento Alimentar/efeitos dos fármacos , Genótipo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Microbiota/efeitos dos fármacos , Oligossacarídeos/farmacologia , Prevotella/efeitos dos fármacos , Prevotella/metabolismo
20.
Cell ; 165(6): 1332-1345, 2016 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-27259147

RESUMO

A compelling set of links between the composition of the gut microbiota, the host diet, and host physiology has emerged. Do these links reflect cause-and-effect relationships, and what might be their mechanistic basis? A growing body of work implicates microbially produced metabolites as crucial executors of diet-based microbial influence on the host. Here, we will review data supporting the diverse functional roles carried out by a major class of bacterial metabolites, the short-chain fatty acids (SCFAs). SCFAs can directly activate G-coupled-receptors, inhibit histone deacetylases, and serve as energy substrates. They thus affect various physiological processes and may contribute to health and disease.


Assuntos
Fibras na Dieta/metabolismo , Ácidos Graxos Voláteis/metabolismo , Microbioma Gastrointestinal/fisiologia , Animais , Histonas/metabolismo , Humanos , Intestinos/imunologia , Intestinos/microbiologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...