Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(19): 25529-25539, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38698765

RESUMO

Two-dimensional (2D) hybrid organic-inorganic perovskite (HOIP) crystals show promise as scintillating materials for wide-energy radiation detection, outperforming their three-dimensional counterparts. In this study, we synthesized single crystals of (PEA2-xBZAx)PbBr4 (x ranging from 0.1 to 2), utilizing phenethylammonium (C6H5CH2CH2NH3+) and benzylammonium (C6H5CH2NH3+) cations. These materials exhibit favorable optical and scintillation properties, rendering them suitable for high light yield (LY) and fast-response scintillators. Our investigation, employing various techniques such as X-ray diffraction (XRD), photoluminescence (PL), time-resolved (TR) PL, Raman spectroscopy, radioluminescence (RL), thermoluminescence (TL), and scintillation measurements, unveiled lattice strain induced by dual-organic cations in powder X-ray diffraction. Density functional theory analysis demonstrated a maximal 0.13 eV increase in the band gap with the addition of BZA cation addition. Notably, the largest Stokes shift of 0.06 eV was observed in (BZA)2PbBr4. The dual-organic cation crystals displayed >80% fast component scintillation decay time, which is advantageous for the scintillating process. Furthermore, we observed a dual-organic cations-induced enhancement of electron-hole transfer efficiency by up to 60%, with a contribution of >70% to the fast component of scintillation decay. The crystal with the lowest BZA concentration, (PEA1.9BZA0.1)PbBr4, demonstrated the highest LYs of 14.9 ± 1.5 ph/keV at room temperature. Despite a 55-70% decrease in LY for BZA concentrations >5%, simultaneous reductions in scintillation decay time (12-32%) may work for time-of-flight positron emission tomography and photon-counting computed tomography. Our work underscores the crucial role of dual-organic cations in advancing our understanding of 2D-HOIP crystals for materials science and radiation detection applications.

2.
J Phys Chem Lett ; 15(14): 3713-3720, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38546293

RESUMO

The remarkable brightness and rapid scintillation observed in perovskite single crystals (SCs) become even more striking when they are operated at cryogenic temperatures. In this study, we present advancements in enhancing the scintillation properties of methylammonium lead bromide (MAPbBr3) SCs by optimizing the synthesis process. We successfully synthesized millimeter-sized MAPbBr3 SCs with bright green luminescence under UV light. However, both MAPbBr3 (Control-1M and THF-0.4M) SCs display notable radioluminescence exclusively at low temperatures due to their phase transitions. Notably, the THF-0.4M SCs exhibit a remarkable improvement in radioluminescence light yield, surpassing Control-1M SCs more than 2-fold. Further, THF-0.4M SCs demonstrate an ultrafast decay component of 0.52 ns (82.2%) and a slower component of 1.80 ns (17.8%), contributing to a rapid scintillation response at low temperatures. Therefore, the amalgamation of ultrafast decay components and improved radioluminescence light yield equips THF-0.4M SCs to emerge as a top choice for perovskite scintillators for X-ray timing applications.

3.
Adv Mater ; : e2309410, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38235521

RESUMO

The development of X-ray scintillators with ultrahigh light yields and ultrafast response times is a long sought-after goal. In this work, a fundamental mechanism that pushes the frontiers of ultrafast X-ray scintillator performance is theoretically predicted and experimentally demonstrated: the use of nanoscale-confined surface plasmon polariton modes to tailor the scintillator response time via the Purcell effect. By incorporating nanoplasmonic materials in scintillator devices, this work predicts over tenfold enhancement in decay rate and 38% reduction in time resolution even with only a simple planar design. The nanoplasmonic Purcell effect is experimentally demonstrated using perovskite scintillators, enhancing the light yield by over 120% to 88 ± 11 ph/keV, and the decay rate by over 60% to 2.0 ± 0.2 ns for the average decay time, and 0.7 ± 0.1 ns for the ultrafast decay component, in good agreement with the predictions of our theoretical framework. Proof-of-concept X-ray imaging experiments are performed using nanoplasmonic scintillators, demonstrating 182% enhancement in the modulation transfer function at four line pairs per millimeter spatial frequency. This work highlights the enormous potential of nanoplasmonics in optimizing ultrafast scintillator devices for applications including time-of-flight X-ray imaging and photon-counting computed tomography.

4.
Phys Chem Chem Phys ; 25(48): 33081-33093, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38037878

RESUMO

The work function (WF) of perovskite materials is essential for developing optoelectronic devices enabling efficient charge transfer at their interfaces. Perovskite's WF can be tuned by MXenes, a new class of two-dimensional (2D) early transition metal carbides, nitrides, and carbonitrides. Their variable surface terminations or the possibility of introducing elemental dopants could advance perovskites. However, the influence of doped-MXenes on perovskite materials is still not fully understood and elaborated. This study provides mechanistic insight into verifying the tunability of MAPbI3 WF by hybridizing with fluorine-terminated Ti3C2Tx (F-MXene) and nitrogen-doped Ti3C2Tx (N-MXene). We first reveal the interfacial interaction between MAPbI3 and MXenes via X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), and photoluminescence spectroscopy (PL). UPS supported by density functional theory (DFT) calculations allowed the description of the influence of F and N on MXene's WF. Furthermore, we developed MAPbI3/MXene heterostructures using F- and N-MXenes. The F-MXenes extended the most WF of MAPbI3 from 4.50 eV up to 3.00 eV, compared to only a small shift for N-MXene. The underlying mechanism was charge transfer from low WF F-MXene to MAPbI3, as demonstrated by PL quenching in MAPbI3/F-MXene heterostructures. Altogether, this work showcases the potential of fluorine-doped MXenes over nitrogen-doped MXenes in advancing perovskite heterostructures, thus opening a door for efficient optoelectronic devices.

5.
ACS Appl Mater Interfaces ; 15(47): 54677-54691, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37966967

RESUMO

Rational design is an important approach to consider in the development of low-dimensional hybrid organic-inorganic perovskites (HOIPs). In this study, 1-butyl-1-methyl pyrrolidinium (BMP), 1-(3-aminopropyl)imidazole (API), and 1-butyl-3-methyl imidazolium (BMI) serve as prototypical ionic liquid components in bismuth-based HOIPs. Element-sensitive X-ray absorption spectroscopy measurements of BMPBiBr4 and APIBiBr5 reveal distinct resonant excitation profiles across the N K-edges, where contrasting peak shifts are observed. These 1D-HOIPs exhibit a large Stokes shift due to the small polaron contribution, as probed by photoluminescence spectroscopy at room temperature. Interestingly, the incorporation of a small fraction of tin (Sn) into the APIBiBr5 (Sn/Bi mole ratio of 1:3) structure demonstrates a strong spectral weight transfer accompanied by a fast decay lifetime (2.6 ns). These phenomena are the direct result of Sn-substitution in APIBiBr5, decreasing the small polaron effect. By changing the active ionic liquid, the electronic interactions and optical responses can be moderately tuned by alteration of their intermolecular interaction between the semiconducting inorganic layers and organic moieties.

6.
J Phys Chem C Nanomater Interfaces ; 127(22): 10737-10747, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37313122

RESUMO

Quantum-well (QW) hybrid organic-inorganic perovskite (HOIP) crystals, e.g., A2PbX4 (A = BA, PEA; X = Br, I), demonstrated significant potentials as scintillating materials for wide energy radiation detection compared to their individual three-dimensional (3D) counterparts, e.g., BPbX3 (B = MA). Inserting 3D into QW structures resulted in new structures, namely A2BPb2X7 perovskite crystals, and they may have promising optical and scintillation properties toward higher mass density and fast timing scintillators. In this article, we investigate the crystal structure as well as optical and scintillation properties of iodide-based QW HOIP crystals, A2PbI4 and A2MAPb2I7. A2PbI4 crystals exhibit green and red emission with the fastest PL decay time <1 ns, while A2MAPb2I7 crystals exhibit a high mass density of >3.0 g/cm3 and tunable smaller bandgaps <2.1 eV resulting from quantum and dielectric confinement. We observe that A2PbI4 and PEA2MAPb2I7 show emission under X- and γ-ray excitations. We further observe that some QW HOIP iodide scintillators exhibit shorter radiation absorption lengths (∼3 cm at 511 keV) and faster scintillation decay time components (∼0.5 ns) compared to those of QW HOIP bromide scintillators. Finally, we investigate the light yields of iodide-based QW HOIP crystals at 10 K (∼10 photons/keV), while at room temperature they still show pulse height spectra with light yields between 1 and 2 photons/keV, which is still >5 times lower than those for bromides. The lower light yields can be the drawbacks of iodide-based QW HOIP scintillators, but the promising high mass density and decay time results of our study can provide the right pathway for further improvements toward fast-timing applications.

7.
Inorg Chem ; 62(23): 8892-8902, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37236171

RESUMO

Two-dimensional hybrid-organic-inorganic perovskite (2D-HOIP) lead bromide perovskite crystals have demonstrated great potential as scintillators with high light yields and fast decay times while also being low cost with solution-processable materials for wide energy radiation detection. Ion doping has been also shown to be a very promising avenue for improvements of the scintillation properties of 2D-HOIP crystals. In this paper, we discuss the effect of rubidium (Rb) doping on two previously reported 2D-HOIP single crystals, BA2PbBr4 and PEA2PbBr4. We observe that doping the perovskite crystals with Rb ions leads to an expansion of the crystal lattices of the materials, which also leads to narrowing of band gaps down to 84% of the pure compounds. Rb doping of BA2PbBr4 and PEA2PbBr4 shows a broadening in the photoluminescence and scintillation emissions of both perovskite crystals. Rb doping also leads to faster γ-ray scintillation decay times, as fast as 4.4 ns, with average decay time decreases of 15% and 8% for Rb-doped BA2PbBr4 and PEA2PbBr4, respectively, compared to those of undoped crystals. The inclusion of Rb ions also leads to a slightly longer afterglow, with residual scintillation still being below 1% after 5 s at 10 K, for both undoped and Rb-doped perovskite crystals. The light yield of both perovskites is significantly increased by Rb doping with improvements of 58% and 25% for BA2PbBr4 and PEA2PbBr4, respectively. This work shows that Rb doping leads to a significant enhancement of the 2D-HOIP crystal performance, which is of particular significance for high light yield and fast timing applications, such as photon counting or positron emission tomography.

8.
Sensors (Basel) ; 19(7)2019 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-30959845

RESUMO

We report on experimental studies of polarimetric sensitivity to torsion in spun highly birefringent fibers. Two classes of spun fibers were examined, namely spun side-hole fibers and birefringent microstructured fibers with different birefringence dispersion, spin pitches, and spin directions. The polarimetric sensitivity to torsion was determined by monitoring a displacement of the spectral interference fringes arising in the output signal because of interference of polarization modes and induced by an additional fiber twist. Both the experimental results and the analytical predictions showed that the sensitivity to torsion normalized to the fringe width in the spun highly birefringent fibers increased asymptotically with the twist rate to the value of 1/ π rad-1. We have also studied the polarimetric response to temperature in the spun side-hole fibers. We have found that, in contrast to the torsional sensitivity, the temperature sensitivity decays asymptotically to zero with increasing fiber twist rate. Therefore, the spun fibers with short spin pitches are especially well suited for torsion measurements because the torsional sensitivity and the range of linear response are both enhanced in such fibers, while at the same time, the cross-sensitivity to temperature is reduced.

9.
Sensors (Basel) ; 19(2)2019 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-30669654

RESUMO

We performed an experimental analysis of the effect of phase mask alignment on the Bragg grating reflection spectra around the wavelength of λB = 1560 nm fabricated in polymer optical fiber by using a multiple order phase mask. We monitored the evolution of the reflection spectra for different values of the angle ϕ by describing the tilt between the phase mask and the fiber. We observed that the peak at λB is split into five separate peaks for the nonzero tilt and that separation of the peaks increases linearly with ϕ. Through comparison with theoretical data we were able to identify the five peaks as products of different grating periodicities, which are associated with the interference of different pairs of diffraction orders on the phase mask.

10.
Sensors (Basel) ; 18(3)2018 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-29558386

RESUMO

In this paper we present an all-fiber interferometric sensor for the simultaneous measurement of strain and temperature. It is composed of a specially fabricated twin-core fiber spliced between two pieces of a single-mode fiber. Due to the refractive index difference between the two cores in a twin-core fiber, a differential interference pattern is produced at the sensor output. The phase response of the interferometer to strain and temperature is measured in the 850-1250 nm spectral range, showing zero sensitivity to strain at 1000 nm. Due to the significant difference in sensitivities to both parameters, our interferometer is suitable for two-parameter sensing. The simultaneous response of the interferometer to strain and temperature was studied using the two-wavelength interrogation method and a novel approach based on the spectral fitting of the differential phase response. As the latter technique uses all the gathered spectral information, it is more reliable and yields the results with better accuracy.

11.
Opt Express ; 26(26): 34185-34199, 2018 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-30650846

RESUMO

We show that the spectral interferometry method and the lateral point-force method used up to now to measure spectral dependence of the group and the phase modal birefringence in highly birefringent fibers with linearly polarized eigenmodes, can be after some modifications extended for the class of spun highly birefringent fibers with elliptically polarized modes. By combining the two methods, it is possible to determine spectral dependence of the group and phase elliptical birefringence in spun highly birefringent fibers. Moreover, if the fiber spin pitch is independently measured, the spectral dependence of ellipticity angle of polarization eigenmodes as well as the built-in linear phase and group birefringence, can be also obtained using the analytical relations between the parameters of spun and non-spun fibers. We demonstrate the effectiveness of the proposed approach in spectral measurements (700-1600 nm) of the spun side-hole and microstructured highly birefringent fibers with different birefringence dispersion and spin pitches ranging from 4.1 to 200 mm.

12.
Appl Opt ; 54(20): 6327-33, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-26193411

RESUMO

We show that diffusion of azobenzene from the solution in methanol into a cladding of a polymer fiber facilitates fabrication of long period gratings by the use of a He-Cd focused laser beam. We have measured a diffusion rate into PMMA cladding of the microstructured fibers annealed in advance at different temperatures and showed that the diffusion rate is strongly affected by temperature treatment of the fiber. We have also investigated an impact of the azobenzene diffusion on fiber spectral loss and cladding surface quality. Furthermore, we have examined a temporal stability of the fabricated long period gratings and their response to temperature and tensile strain.

13.
Opt Lett ; 39(8): 2242-5, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24978963

RESUMO

We present a microstructured polymer fiber dedicated to long period grating (LPGs) inscription using a focused UV laser beam. The core and the microstructured cladding of the developed fiber are made of pure poly(methyl methacrylate) (PMMA). The external layer of the solid part of the cladding has increased UV absorption due to doping with trans-4-stilbenemethanol, which shows an absorption band at around 310 nm related to trans-cis photoisomerization. We present transmission characteristics of LPGs fabricated in this fiber using the point-by-point inscription technique with a He-Cd laser beam of 325 nm wavelength. We also demonstrate that in the proposed fiber, the fabrication process is shortened six times compared to pure PMMA fibers. Moreover, we report on temperature response and long-term stability of the fabricated gratings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...