Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38612174

RESUMO

Excessive orthodontic force can induce inflammatory tooth root resorption due to sustained high stresses within the periodontal ligament (PDL). This study aimed to analyze the PDL pressures during upper incisor retraction using the en masse method with TISAD. The finite element method (FEM) ensured consistent conditions across cases. The models included bone geometry, adjacent teeth, PDL, and orthodontic hardware, analyzed with LS-Dyna. The pressure ranged from 0.37 to 2.5 kPa across the dental arch, with the central incisors bearing 55% of the load. The pressure distribution remained consistent regardless of the force or hook height. The critical pressure (4.7 kPa) was exceeded at 600-650 g force, with notable pressure (3.88 kPa) on the palatal root wall of the right central incisor. Utilizing 0.017 × 0.025 SS archwires in MBT 0.018 brackets provided good torque control and reduced the root resorption risk when forces of 180-200 g per side were applied, maintaining light to moderate stress. Triple forces may initiate resorption, highlighting the importance of nonlinear finite element analysis (FEA) for accurate oral cavity simulations.

2.
Adv Clin Exp Med ; 22(2): 253-60, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23709382

RESUMO

BACKGROUND: Cognizance of the mechanical properties of nickel-titanium archwires is necessary for the management of orthodontic therapy with fixed appliances. Acting on the periodontium with forces that are too heavy may lead to such complications as: pain, tooth root resorption and destruction of the alveolar bone and may also lead to retardation in tooth movement. OBJECTIVES: The aim of the study was to assess the activation and deactivation forces of nickel-titanium archwires: Titanol Superelastic, Copper NiTi 35oC and NeoSentalloy. MATERIAL AND METHODS: The examined material was 90 samples of Titanol Superelastic, Copper NiTi 35oC and NeoSentalloy with diameters of 0.016 and 0.016 x 0.022. All tests were carried out on the Zwick mechanical tests machine at a temperature of 30o C. RESULTS: In the group of archwires with diameters 0.016, the levels of deactivation forces were, respectively, from highest to lowest: Titanol Supertelastic, NeoSentalloy, Copper NiTi 35oC. In the group of rectangular archwires 0.016 x 0.022, the highest deactivation forces were released in Titanol Superelastic. With the high levels of deflection, 0.016 x 0.022 NeoSentalloy archwires released statistically significantly higher levels of force than 0.016 x 0.022 Copper NiTi 35o C, but this force diminished rapidly with lower deflection and below 3 mm of deflection, the highest forces were released by Copper NiTi 35o C. CONCLUSIONS: Testing the mechanical properties of the nickel-titanium wires of various diameters, it was found that round section wires release forces which fall within the range of optimal forces.


Assuntos
Cobre/química , Elasticidade , Níquel/química , Desenho de Aparelho Ortodôntico , Fios Ortodônticos , Titânio/química , Humanos , Teste de Materiais , Estresse Mecânico , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...