Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomedicine (Lond) ; 18(3): 233-258, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-37078419

RESUMO

Background: Modern medicine requires intensive research to find new diagnostic and therapeutic solutions. Recently, upconverting nanoparticles (UCNPs) doped with lanthanide ions have attracted significant attention. Methods: The efficient internalization of UCNPs by cells was confirmed, and their precise cellular localization was determined by electron microscopy and confocal studies. Results: UCNPs colocalized only with specific organelles, such as early endosomes, late endosomes and lysosomes. Furthermore, experiments with chemical inhibitors confirmed the involvement of endocytosis in UCNPs internalization and helped select several mechanisms involved in internalization. Exposure to selected UCNPs concentrations did not show significant cytotoxicity, induction of oxidative stress or ultrastructural changes in cells. Conclusion: This study suggests that UCNPs offer new diagnostic options for biomedical infrared imaging.


Assuntos
Elementos da Série dos Lantanídeos , Nanopartículas , Distribuição Tecidual , Elementos da Série dos Lantanídeos/química , Diagnóstico por Imagem , Nanopartículas/química
2.
Nanotechnology ; 32(24)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33690193

RESUMO

Gd2O3:1% Er3+, 18% Yb3+,x% Mg2+(x = 0; 2.5; 4; 5; 6; 8;10; 20; 25; 50) and Gd2O3:1% Er3+, 18% Yb3+, 2,5% Mg2+,y% Li+(y = 0.5-2.5) nanoparticles were synthesized by homogenous precipitation method and calcined at 900 °C for 3 h in air atmosphere. Powder x-ray diffraction, scanning electron microscopy, cathodoluminescence, transmission electron microscopy, energy dispersive x-ray spectroscopy and photoluminescence techniques were employed to characterize the obtained nanoparticles. We observed a 8-fold increase in red luminescence for samples suspended in DMSO solution for 2.5% of Mg2+doping. The x-ray analysis shows that for the concentration of 2.5% Mg, the size of the crystallites in the NPs is the largest, which is mainly responsible for the increase in the intensity of the upconversion luminescence. But the addition of Li+ions did not improve the luminescence of the upconversion due to decreasing of crystallites size of the NPs. Synthesized nanomaterials with very effective upconverting luminescence, can act as luminescent markers inin vivoimaging. The cytotoxicity of the nanoparticles was evaluated on the 4T1 cell line for the first time.

3.
J Phys Chem C Nanomater Interfaces ; 124(12): 6871-6883, 2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-32952770

RESUMO

Magnetic nanoparticles of Fe3O4 doped by different amounts of Y3+ (0, 0.1, 1, and 10%) ions were designed to obtain maximum heating efficiency in magnetic hyperthermia for cancer treatment. Single-phase formation was evident by X-ray diffraction measurements. An improved magnetization value was obtained for the Fe3O4 sample with 1% Y3+ doping. The specific absorption rate (SAR) and intrinsic loss of power (ILP) values for prepared colloids were obtained in water. The best results were estimated for Fe3O4 with 0.1% Y3+ ions (SAR = 194 W/g and ILP = 1.85 nHm2/kg for a magnetic field of 16 kA/m with the frequency of 413 kHz). The excellent biocompatibility with low cell cytotoxicity of Fe3O4:Y nanoparticles was observed. Immediately after magnetic hyperthermia treatment with Fe3O4:0.1%Y, a decrease in 4T1 cells' viability was observed (77% for 35 µg/mL and 68% for 100 µg/mL). These results suggest that nanoparticles of Fe3O4 doped by Y3+ ions are suitable for biomedical applications, especially for hyperthermia treatment.

4.
Nanotechnology ; 31(46): 465101, 2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-32717731

RESUMO

In photodynamic therapy (PDT), photosensitizer (PS) molecules are irradiated by light to generate reactive oxygen species (ROS), the presence of which subsequently leads to cell death. At present, the modality is limited to the treatment of skin diseases because of the low tissue penetration of visible or ultraviolet light required for producing ROS. To increase tissue penetration and extend the therapeutic possibilities of PDT to the treatment of deep-seated cancer, rare-earth doped nanoparticles capable of up-converting infrared to visible light are investigated. These up-converting nanoparticles (UCNPs) are conjugated with PS molecules to efficiently generate ROS. In this work, we employ hexagonal ß-NaYF4:Yb3 + ,Er3 + as UCNPs and Rose Bengal (RB) as PS molecules and demonstrate efficient in vitro PDT using this nanoformulation. Covalent bonding of the RB molecules is accomplished without their functionalization-an approach which is expected to increase the efficiency of ROS generation by 30%. Spectroscopic studies reveal that our approach results in UCNP surface fully covered with RB molecules. The energy transfer from UCNPs to RB is predominantly non-radiative as evidenced by luminescence lifetime measurements. As a result, ROS are generated as efficiently as under visible light illumination. The in vitro PDT is tested on murine breast 4T1 cancer cells incubated with 250 µg ml-1 of the nanoparticles and irradiated with NIR light under power density of 2 W cm-2 for 10 minutes. After 24 hours, the cell viability decreased to 33% demonstrating a very good treatment efficiency. These results are expected to simplify the protocols for preparation of the PDT agents and lead to improved therapeutic effects.


Assuntos
Érbio/farmacologia , Fluoretos/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Rosa Bengala/farmacologia , Itérbio/farmacologia , Ítrio/farmacologia , Animais , Linhagem Celular Tumoral , Érbio/química , Feminino , Fluoretos/química , Neoplasias Mamárias Animais/tratamento farmacológico , Neoplasias Mamárias Experimentais/tratamento farmacológico , Camundongos , Nanopartículas/química , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Rosa Bengala/química , Itérbio/química , Ítrio/química
5.
Nanotechnology ; 31(22): 225711, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32032002

RESUMO

The paramagnetic Y3-0.02-x Er0.02Yb x Al5O12 (x = 0.02, 0.06, 0.10, 0.12, 0.18, 0.20) nanocrystals (NCs) were synthesized by the microwave-induced solution combustion method. The XRD, TEM and SEM techniques were applied to determine the NCs' structures and sizes. The XRD patterns confirmed that the NCs have for the most part a regular structure of the Y3Al5O12 (YAG) phase. The changes of the distance between donor Yb3+ (sensitizer) and acceptor Er3+ (activator) were realized by changing the donor's concentration with a constant amount of acceptor. Under 980 nm excitation, at room temperature, the NCs exhibited strong red emission near 660 and 675 nm, and green upconversion emission at 550 nm, corresponding to the intra 4f transitions of Er3+ (4F9/2, 2H11/2, 4S3/2) â†’ Er3+ (4I15/2). The strongest emission was observed in a sample containing 18% Yb3+ ions. The red and green emission intensities are respectively about 5 and 12 times higher as compared to NCs doped with 2% of Yb3+. In order to prove that the main factor responsible for the increase of the upconversion luminescence efficiency is reduction of the distance between Yb3+ and Er3+, we examined, for the first time the influence of hydrostatic pressure on luminescence and luminescence decay time of the radiative transitions inside donor ion. The decrease of both luminescence intensity and luminescence decay times, with increasing hydrostatic pressure was observed. After applying hydrostatic pressure to samples with e.g. 2% and 6% Yb3+, the distance between the donor and acceptor decreases. However, for higher concentrations of the donor, this distance is smaller, and this leads to the effective energy transfer to Er3+ ions. With increasing pressure, the maximum intensity of near infrared emission is observed at 1029, 1038 and 1047 nm, what corresponds to 2F5/2 â†’ 2F7/2 transition of Yb3+.

6.
Nanotechnology ; 29(2): 025702, 2018 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-29130898

RESUMO

Nanostructures as color-tunable luminescent markers have become major, promising tools for bioimaging and biosensing. In this paper separated molybdate/Gd2O3 doped rare earth ions (erbium, Er3+ and ytterbium, Yb3+) core-shell nanoparticles (NPs), were fabricated by a one-step homogeneous precipitation process. Emission properties were studied by cathodo- and photoluminescence. Scanning electron and transmission electron microscopes were used to visualize and determine the size and shape of the NPs. Spherical NPs were obtained. Their core-shell structures were confirmed by x-ray diffraction and energy-dispersive x-ray spectroscopy measurements. We postulated that the molybdate rich core is formed due to high segregation coefficient of the Mo ion during the precipitation. The calcination process resulted in crystallization of δ/ξ (core/shell) NP doped Er and Yb ions, where δ-gadolinium molybdates and ξ-molybdates or gadolinium oxide. We confirmed two different upconversion mechanisms. In the presence of molybdenum ions, in the core of the NPs, Yb3+-[Formula: see text] (∣2F7/2, 3T2〉) dimers were formed. As a result of a two 980 nm photon absorption by the dimer, we observed enhanced green luminescence in the upconversion process. However, for the shell formed by the Gd2O3:Er, Yb NPs (without the Mo ions), the typical energy transfer upconversion takes place, which results in red luminescence. We demonstrated that the NPs were transported into cytosol of the HeLa and astrocytes cells by endocytosis. The core-shell NPs are sensitive sensors for the environment prevailing inside (shorter luminescence decay) and outside (longer luminescence decay) of the tested cells. The toxicity of the NPs was examined using MTT assay.


Assuntos
Érbio/química , Gadolínio/química , Substâncias Luminescentes/química , Molibdênio/química , Nanopartículas/química , Imagem Óptica/métodos , Itérbio/química , Astrócitos/citologia , Células HeLa , Humanos , Medições Luminescentes/métodos , Microscopia Confocal/métodos , Nanopartículas/ultraestrutura , Nanotecnologia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...